Oscillating Discontinuity

Consider the graph of $f(x)=\sin \left(\frac{1}{x}\right)$.

Complete this table:

x	$f(x)=\sin \left(\frac{1}{x}\right)$
-0.1	
-0.01	
-0.001	
-0.0001	
0.0001	
0.001	
0.01	
0.1	

Explain what is happening as the x-values get closer and closer to 0 .
What does this tell us about $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$?

The Sandwich Theorem

If $g(x) \leq f(x) \leq h(x)$ for all $x \neq c$ in some interval about c,
and
$\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} f(x)=L$.

Graph $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$.

What two functions "bound" $f(x)$?

Why do these functions "bound" $f(x)$?

Sandwich Theorem Worksheet

1. Prove that $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{2}{x}\right)=0$.
2. Prove that $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{5}{x}\right)=0$.
3. Prove that $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{50 \pi}{\sqrt[3]{x}}\right)=0$.
4. Sketch the graphs of
$y=1-x^{2}, y=\cos x$, and $y=f(x)$ where f is a function that satisfies the inequalities $1-x^{2} \leq f(x) \leq \cos x$ for all x in the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
What can you say about the limit of $f(x)$ as x approaches 0 ? Explain your reasoning.
5. If $3 x \leq f(x) \leq x^{3}+2$ for $0 \leq x \leq 2$, evaluate $\lim _{x \rightarrow 1} f(x)$.
