The Fundamental Theorem of Calculus - The Integral Function - class exploration (by Benita Albert - Oak Ridge High School - Oak Ridge, Tennessee)

The graph of the function $y=f(t)$ is shown. The function is defined for $0 \leq t \leq 4$ and has the following properties:

- The graph of f has odd symmetry around the point $(2,0)$.
- On the interval $0 \leq t \leq 2$, the graph of f is symmetric with respect to the line $t=1$.
- $\int_{0}^{1} f(t) d t=\frac{4}{3}$

Graph of $y=f(t)$

1. Let $F(x)=\int_{0}^{x} f(t) d t$
a. Complete the table.

x	0	1	2	3	4
$F(x)$					

b. Plot the points from your table on the coordinate grid.

Before you sketch the curve consider what you know about the behavior of the graph of $F(x)$ based on the graph of $f(t)$. (Behavior: increasing/decreasing and concavity.)

Now sketch the graph of $F(x)$.

2. Let $G(x)=\int_{2}^{x} f(t) d t$
a. Complete the table.

x	0	1	2	3	4
$F(x)$					

b. Plot the points from your table on the coordinate grid. Sketch the graph of $G(x)$.

3. Let $H(x)=\int_{4}^{x} f(t) d t$
a. Complete the table.

x	0	1	2	3	4
$F(x)$					

b. Plot the points from your table on the coordinate grid. Sketch the graph of $H(x)$.

4. Complete the following table.$\quad F(x)$	$G(x)$	$H(x)$	
The maximum value of the function occurs at what x-value?			

Justify your conclusion using Calculus.

The minimum value of the function occurs at what x-value?			

Justify your conclusion using Calculus.

| The function increases on what intervals
 of x ? | | | |
| :--- | :--- | :--- | :--- | :--- |
| Justify your conclusion using Calculus. | | | |
| The function decreases on what
 intervals of x ? | | | |
| Justify your conclusion using Calculus. | | | |
| The function is concave up on what
 intervals of x ? | | | |

Justify your conclusion using Calculus.
The function is concave down on what intervals of x ?
Justify your conclusion using Calculus.
5. What conjectures would you make about the family of functions of the form $W(x)=\int_{k}^{x} f(t) d t$ for $0 \leq k \leq 4$, where f is the graph given at the beginning of the worksheet?

The Second Fundamental Theorem of Calculus

Derivatives of Functions defined by Integrals - class exploration
In chapter 5, we learned The Fundamental Theorem of Calculus:
If a function is continuous on the interval from $[a, b]$ and $f=F^{\prime}$, then $\int_{a}^{b} f(t) d t=F(b)-F(a)$.
\#1-3: For each $f(t)$, evaluate $F(x)=\int_{1}^{x} f(t) d t$ using the Fundamental Theorem of Calculus to find $F(x)$ in terms of x.

1a. $f(t)=t^{3}$	2a. $f(t)=4 t-t^{2}$	3a. $f(t)=\cos (t)$	
	$F(x)=\int_{1}^{x} t^{3} d t$	$F(x)=\int_{1}^{x} 4 t-t^{2} d t$	$F(x)=\int_{1}^{x} \cos (t) d t$

Next take the derivative of each of the $F(x)$ functions you found in part 1a, 2a, and 3a above.

$1 b$.	$2 b$.	$3 b$.

Let's reconsider \#1-3 from above with a new definition: $\quad F(x)=\int_{1}^{x^{2}} f(t) d t$.
Repeat the process. Use the Fundamental Theorem of Calculus to find $F(x)$ in terms of x.

1c. $f(t)=t^{3}$	$2 c . \quad f(t)=4 t-t^{2}$	
$F(x)=\int_{1}^{\sin x} t^{3} d t$	$F(x)=\int_{1}^{\sin x} 4 t-t^{2} d t$	$F(x)=\int_{2}^{\sin x} \frac{1}{t} d t$

Take the derivative of each of the $F(x)$ functions you found in part 1c, 2c, and 3c above.

$1 d$.	$2 d$.	$3 d$.

In summary:

$2^{\text {nd }}$ FTC 1: The Second Fundamental Theorem of Calculus part 1

If $F(x)=\int_{a}^{x} f(t) d t$ where a is a constant and f is a continuous function, then $F^{\prime}(x)=f(x)$.

$2^{\text {nd }}$ FTC 2: The Second Fundamental Theorem of Calculus part 2

If $F(x)=\int_{a}^{g(x)} f(t) d t$ where a is a constant and f is a continuous function, and g is a differentiable function then $F^{\prime}(x)=f(g(x)) \cdot g^{\prime}(x)$.

Can you use the Second Fundamental Theorem of Calculus to find the following derivatives without going through the process of anti-deriving and then deriving?

$\begin{aligned} & \text { 4a. } \quad F(x)=\int_{1}^{x} 7 \sqrt{t} d t \\ & F^{\prime}(x)= \end{aligned}$	$\begin{aligned} & \text { 5a. } \quad F(x)=\int_{1}^{x} \tan (t) d t \\ & F^{\prime}(x)= \end{aligned}$	6a. $\quad F(x)=\int_{1}^{x} \frac{1}{\sqrt[3]{t}} d t$ $F^{\prime}(x)=$
4b. $\quad F(x)=\int_{3}^{\tan x} 7 \sqrt{t} d t$ $F^{\prime}(x)=$	$\begin{aligned} & \text { 5b. } \quad F(x)=\int_{3}^{3 x^{2}+5 x} \tan (t) d t \\ & F^{\prime}(x)= \end{aligned}$	$\begin{aligned} & \text { 6b. } \quad F(x)=\int_{3}^{e^{x}} \frac{1}{\sqrt[3]{t}} d t \\ & F^{\prime}(x)= \end{aligned}$
4c. $\quad F(x)=\int_{2}^{g(x)} 7 \sqrt{t} d t$ $F^{\prime}(x)=$	5b. $\quad F(x)=\int_{2}^{h(x)} \tan (t) d t$ $F^{\prime}(x)=$	$\begin{aligned} & \text { 6c. } \quad F(x)=\int_{2}^{w(x)} \frac{1}{\sqrt[3]{t}} d t \\ & F^{\prime}(x)= \end{aligned}$

7. Let $H(x)=\int_{\frac{\pi}{2}}^{x} t \cos (t) d t$ for $0<x<2 \pi$.
a. Determine the critical number of $H(x)$.
b. Determine which critical numbers correspond to a relative maximum value of $H(x)$. Justify your answer.
c. Determine which critical numbers correspond to a relative minimum value of $H(x)$. Justify your answer.

§6.4 FTC Part II - More Practice

STATEMENT OF THE FUNDAMENTAL THEOREM OF CALCULUS PART II

If a function f is continuous on $[\mathrm{a}, \mathrm{b}]$, then the function $F(x)=\int_{a}^{x} f(t) d t$ has a derivative

$$
\text { at every point in }(\mathrm{a}, \mathrm{~b}) \text { and } F^{\prime}(x)=\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

Also note: If $F(x)=\int_{a}^{g(x)} f(t) d t$ then $F^{\prime}(x)=\frac{d}{d x}\left[\int_{a}^{g(x)} f(t) d t\right]=f(g(x)) \cdot g^{\prime}(x)$
If $\quad f(x)=\int_{1}^{x} t^{2} d t$
If $f(x)=\int_{1}^{x^{2}} t^{2} d t$
then $f^{\prime}(x)=$
then $f^{\prime}(x)=$

Two important things to keep in mind:

- Always make the lower limit the constant and the upper limit the variable
- Multiple the answer plugged in by the derivative of the limit

Practice: Find the derivative of each of the following functions.

1. $\quad g(x)=\int_{-2}^{x} \sqrt{1+4 t^{2}} d t$	2. $\quad y=\int_{1}^{x}(1+t)^{5} d t$	$3 . \quad F(x)=\int_{0}^{x} 3 d t$	
4. $F(x)=\int_{2}^{x} \sin t d t$	$5 . \quad F(x)=\int_{x}^{1} \tan t d t$	$6 . \quad F(x)=\int_{x}^{2} \cos \left(t^{2}\right) d t$	
7. $\quad F(x)=\int_{2}^{3 x} 2 t d t$	8. $F(x)=\int_{\pi}^{\sin x} 2 t d t$	$9 . \quad F(x)=\int_{a}^{x} f(t) d t$	
$10 . F(x)=\int_{c}^{g(x)} f(t) d t$	$11 . \quad h(x)=\int_{0}^{x^{2}} \sqrt{1+r^{3}} d t$	12.	$y=\int_{e^{e}}^{0} \sin ^{3} t d t$
13.	14.	$g(u)=\int_{1-4 u^{2}}^{-1} \cos t d t$	

Curriculum Module: Calculus: Functions Defined by Integrals

Let $F(x)=\int_{1}^{2 x} f(t) d t$, where the graph of f on the interval $0 \leq t \leq 6$ is shown at the right, and the regions A and B each have an area of 1.3.
a. Compute $F(0) \& F(1)$.
b. Determine $F^{\prime}(x)$

c. Determine the critical numbers of $F(x)$ on the interval $0 \leq t \leq 3$
d. Determine which critical numbers of $F(x)$ corresponds to a maximum value of $F(x)$ on the interval $0 \leq t \leq 3$. Justify your answer.
e. Determine which critical numbers of $F(x)$ corresponds to a minimum value of $F(x)$ on the interval $0 \leq t \leq 3$. Justify your answer.

