§6.1 \& §6.2 Anti-derivatives: Graphically, Numerically and Analytically

1. The graph of f is given in Figure 6.1. Please note that $f=F^{\prime}$.
a. What are the critical points of $\mathrm{F}(\mathrm{x})$?
b. Identify local extrema.
c. Discuss concavity and points of inflection.

d. Sketch an accurate graph of F , the anti-derivative of f. You are given that $\mathrm{F}(0)=0$. Fill in the chart using the Fundamental Theorem of Calculus: $\int_{a}^{b} f(x) d x=F(b)-F(a)$. Then sketch F .

\boldsymbol{x}	$\int_{a}^{b} f(x) d x$	$\boldsymbol{F}(\boldsymbol{x})$
0	$\int_{0}^{0} f(x) d x$	$0+0=0$
1	$\int_{0}^{1} f(x) d x$	$0+\quad=$
2		
3		
4		
5		

e. On the same axes, now
sketch F but given that $F(0)=1$.

x	$F(x)$
0	1
1	
2	
3	
4	
5	

f. Repeat again but now $F(0)=-1$

x	$F(x)$
0	-1
1	
2	
3	
4	
5	

2. Use the figure below and the fact that $P=2$ when $t=0$ to find values of P when $t=1,2,3,4$ and 5 .

x	$P(x)$
0	2
1	
2	
3	
4	
5	

3. Estimate $f(x)$ for $x=2,4,6$, using the given values of $f^{\prime}(x)$ and the fact that $f(0)=50$.

x	0	2	4	6
$f^{\prime}(x)$	17	15	10	2

4. A particle moves back and forth along the x-axis. The figure below (left one) approximates the velocity of the particle as a function of time. Positive velocities represent movement to the right and negative velocities represent movement to the left. The particle starts at the point $(5,0)$. Graph the distance of the particle from the origin, with distance measured in kilometers and time in hours (LABEL!!!).

What is a function that has a derivative of $3 x^{2}$?
A function is an antiderivative of f on an open interval I if $F^{\prime}(x)=f(x)$ for all x in I .

There is an entire family of antiderivatives for each derivative. The general antiderivative of $3 x^{2}$ is $x^{3}+c . c$ is called the constant of integration.
We use the following symbols: $\int f(x) d x=F(x)+c \longrightarrow \quad$ Constant of Integration

Basic Rules for constructing Antiderivatives Analytically:

1. Zero
2. Constant
3. Power Rule

$$
\int \mathrm{O} d x=c
$$

$$
\int k d x=k x+C
$$

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C
$$

4. Natural Log

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

5. Exponential

$$
\int e^{x} d x=e^{x}+C
$$

6 General Rules

$$
\int k f(x) d x=k \int f(x) d x
$$

$$
\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x
$$

Example: Find the following:
a) $\int x^{5} d x$
b) $\int x^{37} d x$
c) $\int x^{-2} d x$
d) $\int x^{\frac{1}{2}} d x$
e) $\int \frac{1}{x^{3}} d x$
f) $\int \sqrt[3]{x} d x$
g) $\int\left(2 x^{2}+1\right) d x$
h) $\int\left(1-x^{3}\right) d x$
i) $\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right) d x$
j) $\int \sqrt{x}\left(x^{2}+1\right) d x$
k) $\int\left(x^{2}+1\right)(x+2) d x$

1) $\int\left(\sqrt{x}+\frac{1}{2 \sqrt{x}}\right) d x$
m) $\int \frac{x^{3}-x^{2}+1}{x} d x$
n) $\int \frac{4 x^{5}-3 x^{2}-5}{x^{2}} d x$
o) $\int \frac{2 x-x^{2}+3}{\sqrt{x}} d x$
p) $\int 8 d x$
q) $\int 8 x d x$
r) $\int 8 x^{2} d x$
s) $\int 8 x^{3} d x$
t) $\int \pi x^{3} d x$
u) $\int \frac{e^{x}}{5} d x$
v) $\int\left(3 x+x^{2}\right) d x$
w) $\int \frac{1}{2 x} d x$
x) $\int\left(\frac{1}{x}+\frac{1}{x^{3}}\right) d x$

§6.1-§6.2 Antiderivatives-cont.

Trig Rules:

1. $\int \cos x d x=\sin x+c$
2. $\int \sin x d x=-\cos x+c$
3. $\int \sec ^{2} x d x=\tan x+c$
4. $\int \sec x \tan x d x=\sec x+c$
5. $\int \csc ^{2} x d x=-\cot x+c$
6. $\int \csc x \cot x d x=-\csc x+c$
7. Find the following:
a) $\int(2 \cos x-\sin x) d x$
b) $\int 2 \sec x \tan x d x$
c) $\int-3 \csc ^{2} x d x$
d) $\int \frac{1}{2} \csc x \cot x d x$
e) $\int \sec x(\sec x+\tan x) d x$
f) $\int \frac{1}{\csc x} d x$
g) $\int\left(3 x^{2}-5 x+\sin x\right) d x$
h) $\int\left(e^{x}-\sec ^{2} x-\frac{5}{x}\right) d x$
i) $\int\left(\sin ^{2} x+\cos ^{2} x\right) d x$
j) $\int\left(10 x^{4}-2 \sec ^{2} x\right) d x$
k) $\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta$
8. Initial Conditions: You can solve for a particular c if you are given certain preliminary information; find $\int(2 x+3) d x$ such that $F(1)=4$.
9. Find the velocity function $v(t)$ and position function $s(t)$ corresponding to the acceleration function $a(t)=4 t+4$ given $v(0)=8$ and $s(0)=12$.

Highlight these three Rules:

1. $\int a^{x} d x=\frac{a^{x}}{\ln a}+c$
2. $\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+c$
3. $\int \frac{1}{1+x^{2}} d x=\arctan x+c$
4. Find the following
a) $\int\left(x^{2}-3 x+2^{x}\right) d x$
b) $\int\left(\frac{1}{3^{-x}}-x^{3}\right) d x$
c) $\int \frac{2}{\sqrt{1-x^{2}}} d x$
d) $\int\left(\frac{1}{2 x^{2}}-\frac{3}{1+x^{2}}\right) d x$
e) $\int\left(x^{\frac{2}{3}}-4 x^{\frac{-1}{5}}+\frac{4}{x}\right) d x$
f) $\int\left(\frac{2}{x}+3 e^{x}\right) d x$
g) $\int\left(\frac{1}{2 t}-\sqrt{2} e^{t}\right) d t$
h) $\int(4 \sin x+3 \cos x) d x$
i) $\int\left(\frac{1}{\csc x}\right) d x$
j) $\int\left(4 \sec ^{2} x+\csc x \cot x\right) d x$
k) $\int \sec x(\sec x+\tan x) d x$
1) $\int \frac{1-x+3 \sqrt{x}}{x^{2}} d x$
m) $\int \sec x(\sec x+\cos x) d x$
n) $\int \frac{\sin x}{\cos ^{2} x} d x$
o) $\int \frac{\sin 2 x}{\cos x} d x$
p) $\int\left(2^{x}-x^{2}+\frac{1}{4^{x}}\right) d x$
q) $\int\left(e^{x}-\frac{1}{1+x^{2}}\right) d x$
r) $\int\left(3^{x}+\frac{1}{\sqrt{1-x^{2}}}\right) d x$

§6.2-cont. Evaluating the Definite Integral

By the FTC part 1, we know the following: $\int_{a}^{b} f(x) d x=F(b)-F(a) \quad$ where $f=F^{\prime}$
Example 1: Evaluate $\int_{1}^{5} 2 x d x$ by hand.
By FTC, we know $\int_{1}^{5} 2 x d x=F(5)-F(1)$. Since $F(x)=\int 2 x d x=x^{2}+C$ we can conclude the following:

$$
\begin{array}{lll}
F(x)=x^{2}+C & \mathrm{~F}(5)=5^{2}+C & \mathrm{~F}(5)-F(1)=\left(5^{2}+C\right)-\left(1^{2}+C\right)=24 \\
& \mathrm{~F}(1)=1^{2}+C &
\end{array}
$$

Therefore $\int_{1}^{5} 2 x d x=F(5)-F(1)=24$
Example 2: Evaluate $\int_{0}^{\frac{5 \pi}{6}} \cos x d x$ by hand. (*Notice the simpler notation*)

$$
\int_{0}^{\frac{5 \pi}{6}} \cos x d x=\left.\sin x\right|_{0} ^{\frac{5 \pi}{6}}=\sin \left(\frac{5 \pi}{6}\right)-\sin (0)=\frac{1}{2}-0=\frac{1}{2} \quad \text { Use your calculator to check this answer. }
$$

Practice: Evaluate the following using proper notation shown in Example 2. Check your answers with your calculator.

1. $\int_{0}^{1} x^{3} d x$
2. $\int_{-2}^{1} 5 d x$
3. $\int_{-2}^{4}\left(\frac{x}{2}+3\right) d x$
4. $\int_{0.5}^{1.5}(-2 x+4) d x$
5. $\int_{0}^{1} x d x$
6. $\int_{0}^{2}\left(1-x^{2}\right) d x$
7. $\int_{0}^{1} e^{x} d x$
8. $\int_{-2}^{1}|x| d x$
Think Geometrically!

For each of the following problems, write a definite integral to express the area under the curve. The equation for the pictured function is provided. Then use the Fundamental Theorem of Calculus to find the area.
6. $f(x)=2 x+1$

7. $f(x)=x^{2}-4$

8. $f(x)=3-x^{2}$

9. $f(x)=e^{x}$

For each of the following, graph and find the area under the graph of $f(x)$ from a to b. Show the definite integral and your evaluation.
10. $f(x)=4-x, a=-1, b=2$

11. $f(x)=4 x-x^{2}, a=0, b=4$

12. $f(x)=\cos x, a=-\frac{\pi}{2}, b=\frac{\pi}{2}$

