TWO TRIG LIMITS EXPLORATION: Let's examine the following limit using technology to help us evaluate.

#1)
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right) = ?$$

Let's look at the graphs of the numerator and denominator separately, on the same graph. On your graphing calculator, set the following 1) Y= 2) MODE 3) ZOOM to obtain the graph.

Plot1 Plot2 Plot3	•	•	•	•	1	•	•	•	•
<pre>\Y1=sin(X)</pre>		•	•		Ł	•	•	•	•
\Y2=Χ						_			
<u>\Ý3<u></u>₿Ŷ1∕Y2</u>	Ι.	_	سبر				٠.,		
<Υ 4 =					Т				
∖Ys=	· ·	•	·	•	Ł	•	•	•	•
∖Ye=	•	•	•	•	Ł	•	•	•	•
\Y7=					I.				

TRACE to x = 0. Move the left and right arrow keys to the left and right of x=0.

What appears to be happening at this x-value?

Press 2nd ZOOM to <u>turn off the axes</u> and GRAPH again. Now what do you see, or don't you see?

Let's examine the TABLE before we conclude. Press 2^{nd} WINDOW to get to the TABLE SETUP menu. Set it as shown. Press 2^{nd} GRAPH to see the table and use the up arrow to scroll to x = -3.

Examine the y-values in the table as x gets closer to zero from the left and as x gets closer to zero from the right.

What appears to be happening? Pg1

Return to the Table SetUp. Reset the TblStart =0. Now let's zoom in on the table by changing the Table Step shown as Δ Tbl from 1 to 0.01.

Press 2nd GRAPH to view the table again.

Examine the y-values in the table as x gets closer to zero from the left and as x gets closer to zero from the right.

lım

 $x \rightarrow 0$

Χ	Y3			
-03 02 01 0 .01 .02 .03	.99985 .99993 .99998 ERROR .99998 .99993 .99985			
X=03				

What appears to be happening?

In conclusion, we now know graphically that

 $\sin x$

х

a)
$$\lim_{x \to 0} \left(\frac{\sin(8x)}{8x} \right) = ?$$
 b) $\lim_{x \to 0} \left(\frac{\sin(2x)}{2x} \right) = ?$ c) $\lim_{x \to 0} \left(\frac{\sin(x)}{6x} \right) = ?$

d)
$$\lim_{x \to 0} \left(\frac{\sin(3x)}{x} \right) = ?$$
 e) $\lim_{x \to 0} \left(\frac{\sin(9x)}{4x} \right) = ?$ f) $\lim_{x \to 0} \left(\frac{\sin(5x)}{7x} \right) = ?$

PRACTICE: Evaluate the following limits. <u>DO NOT USE your calculator.</u>

J)
$$\lim_{x \to 0} \left(\frac{9\sin(x)}{2x} \right) = ?$$
 K) $\lim_{x \to 0} \left(\frac{\sin(12x)}{4x} \right) = ?$ L) $\lim_{x \to 0} \left(\frac{\sin(15x)}{10x} \right) = ?$

Let's examine the following limit using technology to help us evaluate.

#2)
$$\lim_{x \to 0} \left(\frac{1 - \cos x}{x} \right) =$$
____?

After graphing Y1 = 1 - cos(x) and Y2 = x, what are your thoughts about this limit?

Let's take a closer look using the table.

We'll look at the table near x=0 with a two different $\,\Delta\,\text{Tbl}$ zooming in toward zero.

1)
$$\Delta Tbl=0.01$$
 2) $\Delta Tbl = 0.0001$

For Δ Tbl = 0.01, examine the LHL and the RHL.

$$\lim_{x \to 0^{-}} \frac{1 - \cos(x)}{x} \implies \left. \frac{1 - \cos(x)}{x} \right|_{x = -0.01} = \frac{+0.}{-0.} = \underline{\qquad \dots}$$
$$\lim_{x \to 0^{+}} \frac{1 - \cos(x)}{x} \implies \left. \frac{1 - \cos(x)}{x} \right|_{x = +0.01} = \frac{+0.}{+0.} = \underline{\qquad \dots}$$

For Δ Tbl = 0.0001, examine the LHL and the RHL.

$$\lim_{x \to 0^{-}} \frac{1 - \cos(x)}{x} \implies \frac{1 - \cos(x)}{x}\Big|_{x = -0.0001} = \frac{+0.}{-0.} = \underline{\qquad \dots}$$
$$\lim_{x \to 0^{+}} \frac{1 - \cos(x)}{x} \implies \frac{1 - \cos(x)}{x}\Big|_{x = +0.0001} = \frac{+0.}{-0.} = \underline{\qquad \dots}$$

After closer examination of the left and right-hand limits as x approaches zero, the limit values appear to be getting closer and closer to what value?

In conclusion:

Explore the behavior of the graph $f(x) = \cos\left(\frac{1}{x}\right)$ near x = 0 by using the

following windows to zoom in near zero.

