‘ Calculus Name l"b/ét/

- Period 2 3 4

Inverse Function Theorem °

Example:

If fis a one-to-one differentiable function &
its inverse ! is also differentiable,
then for the point f(a)=5b

() ®)=
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Let f(x)=x'+x+1. Find an approximation for ( S _1) 4.

Solution: Because the derivative f'(x)=3x+1 is always positive,

the function f is always increasing and, therefore, one-to-one.
One-to-one-functions have inverses even though we may not be able to

~ solve and find the inverse function. But f has aninverse ' which is also
a function.

To apply the inverse theorem, we must find the corresponding a value for
the given 5 value of 4. Recall that the domain of a function is the range of
the inverse and vice versa.

So, we want to solve for x in the equation: x* +x+1=4.
Enter the function Y1=x’ + x+1 and Y2=4.

Use your calculator and the CALC 5: Intersect function to find the value.
The corresponding x ~1.213411663...

You can use your calculator to complete the evaluation

Store X->A. Evaluate the derivative at A. Take the reciprocal..................

According to the theotem above ( = ) 4)= e 21341” 1663.)" So, ( f "1)
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(See HOME screen image above).
(4)~0.185.

Exercises: Record intermediate values in the table. Round all answers to the nearest thousandth.

1. If f(x)=2x+sinx, | A= (A= 1, 2/5056247 | [
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Iif Jc\é(/ is continuous o a

closed interval [0.{ b]and k.

is any number between

;FC@A and Hb) then there

exists at least one value in

[CL/ \0] such that )C(o) =K.

On a continuous function, you will
hit every y-value between two given
y-values at Jeast once.
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Mean Value Theorem

s
If 7@(,/ is continuous on the
closed interval [0/ b} and
differentiable on(&-/ ‘0), then _If conditions are TS :
" i mmportant!) there is at least one point
MV E there must exist at least one y 5 5 :
where the slope of the tangent line
valueC-in (0‘1 ‘0§11C11 that equals the slope of the secant line.
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Calculus: IVT vs. MVT (vs. EVT) Name %éb{
) Lo 2 3 4

1. Letfbe a function that is differentiable on the open interval (1, 10). If /(2)=-5, /(5)=5,

and f(9)=-5, which of the following statements must be true? If the statement is true, also list
which theorem guarantees it. : '
g (5%)
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2. The function f is continuous for —2 < x <1 and differentiable for —2 <x <1 . If F (—2) =3
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(7 and f (l) =4, which of the following statements could be true? For each of the true statements,
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state which theorem supports it. o S
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3. Given the diagram at the right, that f(x) s conﬁnuous, f(0)= 1and f3)=4, i
is there a ¢ on the interval (0, 3) such that f(¢)=2.5 ? Justify your answer. gl
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4. A car travels on a straight track. During the time interval 0 <7 <60 seconds, the car’s velocity
203&9 & v, measured in feet per second, and acceleration a, measured in feet per second per second, are
P56 \/(2— * continuous functions. The table below shows selected values of these functions.

Ko f(sec) |0 15 |25 |30 |35 [50 |60
V() 20 <30 |20 |14 |=00 -|0: |10
(ft/sec)
a(t) Lo ot o i A o | 2
(ft/sec?) .

a. For 0 <t <60, must there be a time ¢ when v(i) —57? Justify your answer. aﬂD\;CS ‘9/ ";
vV 36) < V(‘c\ < v (50) ; V() s Cornoss -
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b. For 0 <t <60, must there be a time # when a( ) O ? Justify your answer.
o= vi(©) s crvhnuoss end. difrerethuole
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5. The functions fand g are differentiable for all real numbers, and g is strictly increasing. The table
below gives the values of the functions and their first derivatives at the selected values of x. The

function h is given by 4(x) = f(g(x)) -6.

¥ f(x) | () | g(x) | g'(x)
1 6 4 2 -5
2 9 2 3 1
3 10 -4 4 2
4 -1 3 6 7

a. Explain why there must be a value » for 1 {7 k 3 such that A{r)=-5. W \n( i a
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6. Letgbe abcc;l![inuous function on the closed interval —1 < x <3 and differentiable on the open
interval -1<x<3. If g (—1) =-10 and g(3) = 6, which of the following are guaranteed?

List the theorem that guarantees those statements as well. (%) B (4) Lol . Cilp A{

a._ (c) 0 for some c in the interval —1 <x < 3. -~
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c. (C) 4 for some c in the interval —1<x < 3

< 9(><\ & wndmuayt on [1,3)
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