Relationship between f, f^{\prime}, and $f^{\prime \prime}$. (Calculator ACTIVE!!!)

2008 \#76
Graph of f^{\prime}
The graph of f^{\prime}, the derivative of f, is shown above for $-2 \leq x \leq 5$. On what intervals is f increasing?
(A) $[-2,1]$ only
(B) $[-2,3]$ only
(C) $[3,5]$ only
(D) $[0,1.5]$ and $[3,5]$
(E) $[-2,-1],[1,2]$, and $[4,5]$

2008 \#78

The first derivative of the function f is defined by $f^{\prime}(x)=\sin \left(x^{3}-x\right)$ for $0 \leq x \leq 2$. On what intervals is f increasing?
(A) $1 \leq x \leq 1.445$ only
(B) $1 \leq x \leq 1.691$
(C) $1.445 \leq x \leq 1.875$
(D) $0.577 \leq x \leq 1.445$ and $1.875 \leq x \leq 2$
(E) $0 \leq x \leq 1$ and $1.691 \leq x \leq 2$

The graph of the derivative of a function f is shown in the figure above. The graph has horizontal tangent lines at $x=-1, x=1$, and $x=3$. At which of the following values of x does f have a relative maximum?
(A) -2 only
(B) 1 only
(C) 4 only
(D) -1 and 3 only
(E) $-2,1$, and 4

