## Concavity and Inflection Points (No Calculator)

## 1997 \#5

The graph of $y=3 x^{4}-16 x^{3}+24 x^{2}+48$ is concave down for
(A) $x<0$
(B) $x>0$
(C) $x<-2$ or $x>-\frac{2}{3}$
(D) $x<\frac{2}{3}$ or $x>2$
(E) $\frac{2}{3}<x<2$

## 2003 \#17

Let $f$ be the function given by $f(x)=2 x e^{x}$. The graph of $f$ is concave down when
(A) $x<-2$
(B) $x>-2$
(C) $x<-1$
(D) $x>-1$
(E) $\mathrm{x}<0$

2003 \#21


The second derivative of the function $f$ is given by $f^{\prime \prime}(x)=x(x-a)(x-b)^{2}$. The graph of $f^{\prime \prime}$ is shown above. For what values of $x$ does the graph of $f$ have a point of inflection?
(A) 0 and $a$ only
(B) 0 and $m$ only
(C) $b$ and $j$ only
(D) $0, a$, and $b$
(E) $b, j$, and $k$

## 2008 \#20

Let $f$ be a function with a second derivative given by $f^{\prime \prime}(x)=x^{2}(x-3)(x-6)$. What are the $x$-coordinates of the points of inflection of the graph of $f$ ?
(A) 0 only
(B) 3 only
(C) 0 and 6 only
(D) 3 and 6 only
(E) 0,3 , and 6

