Inverse Function Derivatives (No Calculator)

2008 #26

What is the slope of the line tangent to the curve $y = \arctan(4x)$ at the point at which $x = \frac{1}{4}$?

- (A) 2

- (B) $\frac{1}{2}$ (C) 0 (D) $-\frac{1}{2}$ (E) -2

2008 #28, part 1

Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?

determined

determined

- (A) $-\frac{1}{2}$ (B) $-\frac{1}{8}$ (C) $\frac{1}{6}$ (D) $\frac{1}{3}$ (E) cannot be

2008 #28, part 2

Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(15)?

- (A) $-\frac{1}{2}$ (B) $-\frac{1}{8}$ (C) $\frac{1}{6}$ (D) $\frac{1}{3}$ (E) cannot be

2003 #27

Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(-2) = -1, what is the value of g'(-2)?

- (A) $\frac{1}{13}$ (B) $\frac{1}{4}$ (C) $\frac{7}{4}$ (D) 4 (E) 13