Inverse Function Derivatives (No Calculator)

2008 \#26

What is the slope of the line tangent to the curve $y=\arctan (4 x)$ at the point at which $x=\frac{1}{4}$?
(A) 2
(B) $\frac{1}{2}$
(C) 0
(D) $-\frac{1}{2}$
(E) -2

2008 \#28, part 1

Let f be a differentiable function such that $f(3)=15, f(6)=3, f^{\prime}(3)=-8$, and $f^{\prime}(6)=-2$. The function g is differentiable and $g(x)=f^{-1}(x)$ for all x. What is the value of $g^{\prime}(3)$?
(A) $-\frac{1}{2}$
(B) $-\frac{1}{8}$
(C) $\frac{1}{6}$
(D) $\frac{1}{3}$
(E) cannot be
determined

2008 \#28, part 2

Let f be a differentiable function such that $f(3)=15, f(6)=3, f^{\prime}(3)=-8$, and $f^{\prime}(6)=-2$. The function g is differentiable and $g(x)=f^{-1}(x)$ for all x. What is the value of $g^{\prime}(15)$?
(A) $-\frac{1}{2}$
(B) $-\frac{1}{8}$
(C) $\frac{1}{6}$
(D) $\frac{1}{3}$
(E) cannot be determined

2003 \#27
Let f be the function defined by $f(x)=x^{3}+x$. If $g(x)=f^{-1}(x)$ and $g(-2)=-1$, what is the value of $g^{\prime}(-2)$?
(A) $\frac{1}{13}$
(B) $\frac{1}{4}$
(C) $\frac{7}{4}$
(D) 4
(E) 13

