Mean Value Theorem, Extreme Value Theorem, Intermediate Value Theorem and Related Rate Questions

2003 \#80

The function f is continuous for $-2 \leq x \leq 1$ and differentiable for $-2<x<1$. If $f(-2)=-5$ and $f(1)=4$, which of the following statements could be false?
(A) There exists c, where $-2<c<1$, such that $f(c)=0$.
(B) There exists c, where $-2<c<1$, such that $f^{\prime}(c)=0$.
(C) There exists c, where $-2<c<1$, such that $f(c)=3$.
(D) There exists c, where $-2<c<1$, such that $f^{\prime}(c)=3$.
(E) There exists c, where $-2 \leq x \leq 1$, such that $f(c) \geq f(x)$ for all x on the closed interval $-2 \leq x \leq 1$.

2008 \#89

The function f is continuous for $-2 \leq x \leq 2$ and $f(-2)=f(2)=0$. If there is no c, where $-2<c<2$, for which $f^{\prime}(c)=0$, which of the following statements must be true?
(A) For $-2<k<2, f^{\prime}(k)>0$.
(B) For $-2<k<2, f^{\prime}(k)<0$.
(C) For $-2<k<2, f^{\prime}(k)$ exists.
(D) For $-2<k<2, f^{\prime}(k)$ exists, but f^{\prime} is not continuous.
(E) For some k, where $-2<k<2, f^{\prime}(k)$ does not exist.

2008 \#88

The radius of a sphere is decreasing at a rate of 2 centimeters per second. At the instant when the radius of the sphere is 3 centimeters, what is the rate of change, in square centimeters per second, of the surface area of the sphere? (The surface area S of a sphere with radius r is $S=4 \pi r^{2}$.)
(A) -108π
(B) -72π
(C) -48π
(D) -24π
(E) -16π

