Limits (No Calculator)

2003 \#79

For which of the following does $\lim _{x \rightarrow 4} f(x)$ exist?
L.

III.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

2008 \#77

Graph of f
The figure above shows the graph of a function f with domain $0 \leq x \leq 4$. Which of the following statements are true?
I. $\quad \lim _{x \rightarrow 2^{-}} f(x)$ exists.
II. $\lim _{x \rightarrow 2^{+}} f(x)$ exists.
III. $\lim _{x \rightarrow 2} f(x)$ exists.
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III
$\lim _{x \rightarrow 0} \frac{5 x^{4}+8 x^{2}}{3 x^{4}-16 x^{2}}$ is
(A) $-\frac{1}{2}$
(B) 0
(C) -1
(D) $\frac{5}{3}$
(E) nonexistent

2008 \#5, part 2

$\lim _{x \rightarrow \infty} \frac{5 x^{4}+8 x^{2}}{3 x^{4}-16 x^{2}}$ is
(A) $-\frac{1}{2}$
(B) 0
(C) -1
(D) $\frac{5}{3}$
(E) nonexistent

2008 \#5, part 3
$\lim _{x \rightarrow 1} \frac{5 x^{4}+8 x^{2}}{3 x^{4}-16 x^{2}}$ is
(A) $-\frac{1}{2}$
(B) 0
(C) -1
(D) $\frac{5}{3}$
(E) nonexistent

2008 \#1
$\lim _{x \rightarrow \infty} \frac{(2 x-1)(3-x)}{(x-1)(x+3)}$ is
(A) -3
(B) -2
(C) 2
(D) 3
(E) nonexistent

2008 \#19

What are all horizontal asymptotes of the graph of $y=\frac{5+2^{x}}{1-2^{x}}$ in the $x y$-plane?
(A) $y=-1$ only
(B) $y=0$ only
(C) $y=5$ only
(D) $y=-1$ and $y=0$
(E) $y=-1$ and $y=5$

2003 \#3
For $x \geq 0$, the horizontal line $y=2$ is an asymptote for the graph of the function f. Which of the following statements must be true?
(A) $f(0)=2$
(B) $f(x) \neq 2$ for all $x \geq 0$
(C) $f(2)$ is undefined.
(D) $\lim _{x \rightarrow 2} f(x)=\infty$
(E) $\lim _{x \rightarrow \infty} f(x)=2$

2003 \#13

The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?
(A) a
(B) b
(C) c
(D) d
(E) e

2003 \#20

$$
f(x)= \begin{cases}x+2 & \text { if } x \leq 3 \\ 4 x-7 & \text { if } x>3\end{cases}
$$

Let f be the function given above. Which of the following statements are true about f ?
I. $\quad \lim _{x \rightarrow 3} f(x)$ exists.
II. $\quad f$ is continuous at $x=3$.
III. $\quad f$ is differentiable at $x=3$.
(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II and III

2008 \#6

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}
$$

Let f be the function defined above. Which of the following statements about f are true?
I. $\quad f$ has a limit at $x=2$.
II. $\quad f$ is continuous at $x=2$.
III. $\quad f$ is differentiable at $x=2$.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

Last Question

$\lim _{x \rightarrow 0} \frac{\sin x \cos x}{x}$ is
(A) -1
(B) 0
(C) 1
(D) $\frac{\pi}{4}$
(E) nonexistent

