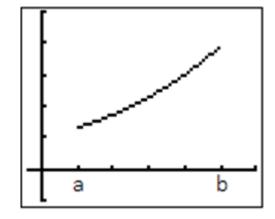
<u>Fill in the Blanks</u> for the Big Topics in Chapter 5: The Definite Integral $\int f(t)dt$

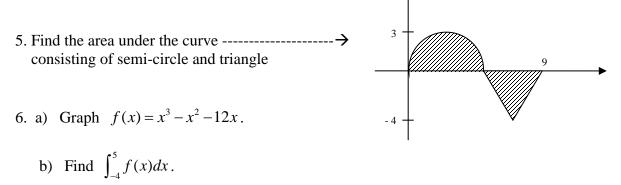
- Estimating an integral using a Riemann sum:
 - 1. The Left rule uses the left endpoint of each subinterval.
 - 2. The <u>Right rule</u> uses the right endpoint of each subinterval.
 - 3. The Midpoint rule uses the midpoint of each subinterval.
 - 4. The <u>Trapezoid rule</u> uses the average from the left and right rules, i.e.

Formula for Trapezoid estimate using Left and Right estimates: Trap(n) =

- If the graph of f is increasing on [a, b], then ______ $\leq \int_{a}^{b} f(x)dx \leq$ ______ • If the graph of f is decreasing on [a, b], then ______ $\leq \int_{a}^{b} f(x)dx \leq$ ______ • If the graph of f is concave up on [a, b], then ______ $\leq \int_{a}^{b} f(x)dx \leq$ ______ • If the graph of f is concave down on [a, b], then ______ $\leq \int_{a}^{b} f(x)dx \leq$ ______ • $\int_{a}^{b} f(x)dx \leq$ ______ • $\int_{a}^{b} F'(t)dt =$ total change of F(t) between t = a and t = b• Average value of f from a to b = ______
- If g is odd, then $\int_{-a}^{a} g(x) dx =$ _____
- Given $a \le x \le b$, $\int_{b}^{a} f(x) dx =$ _____
- $\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx =$ _____
- $\int_{a}^{b} (f(x) + g(x))dx =$ _____
- $\int_{a}^{b} cf(x) dx =$ _____


Ch 5 Review: Free Response

Non-Calculator


- 1. Calculate the exact value of $y = \int_0^3 \sqrt{9 x^2} dx$. (Use the geometric formula.)
- 2. It is known that $\int_0^{12} f(x) dx = 18$ and $\int_0^9 f(x) dx = 10$, find $\int_9^{12} f(x) dx$.
- 3. Show the following on the graph:
 - a) f(b) f(a)
 - b) a line whose slope is $\frac{f(b) f(a)}{b a}$
 - c) an area F(b) F(a) where F' = f
 - d) f(a)(b-a)

e) average value of
$$f = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Calculator

4. Set up an integral and calculate the average velocity of $v(t) = 50(1.2)^t$ in the first 10 seconds if t represents seconds and v represents ft/sec.

- c) Set up integrals that represent the total area between the curve and the x-axis.
- d) Find the average value of the function on the interval [0, 3] (Always show your work and give the answer to the third decimal place.)

7. If
$$\int_0^5 f(x)dx = 5$$
 and $\int_0^2 f(x)dx = 3$, then $\int_2^5 f(x)dx$?

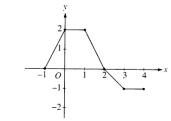
8. A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per sec).

- a) Find the displacement of the particle during the time period $1 \le t \le 4$.
- b) Find the distance traveled during this time period.

9. Use the Midpoint Rule with n = 5 to approximate $\int_{1}^{2} \frac{1}{x} dx$.

Chapter 5 Review: Multiple Choice

Non-Calculator


1.
$$\int_{0}^{1} ||dx| = (A) 0 (B) 1 (C) \frac{1}{2} (D) 2 (E) -1$$

For questions 2-5, $f(x) = \int_{0}^{x} f'(y)dt$ and the graph of f' is shown.
2. Which of the following is/are true?
I. $f(-1) = -1$ II. $f(1) < f'(3)$
(A) Ionly (B) II only (C) III only
(D) I and II (E) I. II and III
3. Which of the following is/are true about the graph of f ?
I. f is increasing on $(-1, 2)$ only
II. f is increasing on $(-1, 2)$ only
II. f is increasing on $(-1, 2)$ only
(A) Ionly (B) II only (C) III only (D) I and III (E) none
4. Which of the following is/are true about the graph of f ?
I. f is concave up on $(1, 3)$
III. f is a relative minimum at $x = 2$
II. f has a relative minimum at $x = 2$
II. f has a relative minimum at $x = 2$
II. f has a relative minimum at $x = 2$
II. f has a relative minimum at $x = 2$
II. f has a relative minimum at $x = 2$
II. f has a relative minimum at $x = 2$
II. f has a relative minimum at $x = 4$
III. f has a relative minimum at $x = 4$
III. f has a relative minimum at $x = 4$
III. f has a relative minimum at $x = 4$
III. f has a relative minimum at $x = 4$
III. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has a relative minimum at $x = 4$
II. f has $f(x) dx + \int_{0}^{1} f(x) dx$ (D) $\int_{0}^{1} f(x) dx - \int_{0}^{1} f(x) dx$ (D) f hor $f(x) dx$ (D) f hor

Calculator

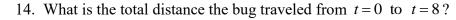
8. Let f be a continuous function on the closed interval [0,2]. If $2 \le f(x) \le 4$, then the greatest possible value of $\int_0^2 f(x) dx$ is (A) 0 (B) 2 (C) 4 (D) 8 (E) 16

9. If
$$\int_{1}^{10} f(x) dx = 4$$
 and $\int_{10}^{3} f(x) dx = 7$, then $\int_{1}^{3} f(x) dx =$
(A) -3 (B) 0 (C) 3 (D) 10 (E) 11

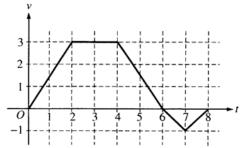
10. The graph of a piecewise-linear function f, for $-1 \le x \le 4$, is shown. What is the value of $\int_{-1}^{4} f(x) dx$? (A) 1 (B) 2.5 (C) 4 (D) 5.5 (E) 8

11. If F and f are continuous functions such that F'(x) = f(x) for all x, then $\int_{a}^{b} f(x) dx =$ (A) F'(a) - F'(b) (B) F'(b) - F'(a) (C) F(a) - F(b)

(A) F'(a) - F'(b) (B) F'(b) - F'(a) (C) F(a)(D) F(b) - F(a) (E) none of the above

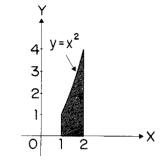

12. The velocity of a particle moving on a line at time t is $v = 3t^{\frac{1}{2}} + 5t^{\frac{3}{2}}$ meters per second. How many meters did the particle travel from t=0 to t=4?

(A) 32 (B) 40 (C) 64 (D) 80 (E) 184


Problems 13 and 14 refer to the diagram above. A bug begins to crawl up a vertical wire at time t = 0. The velocity v of the bug at time t, $0 \le t \le 8$, is given by the function whose graph is shown.

13. At what value of t does the bug change direction?

(A) 2 (B) 4 (C) 6 (D) 7 (E) 8



- (A) 14 (B) 13 (C) 11 (D) 8 (E) 6
- 15. If the definite integral $\int_0^2 e^{x^2} dx$ is first approximated by using two <u>inscribed</u> rectangles of equal width and then approximated by using the trapezoidal rule with n = 2, the difference between the two approximations is
 - (A) 53.60 (B) 30.51 (C) 27.80 (D) 26.80 (E) 12.78

- 16. A particle with velocity at any time t given by $v(t) = e^t$ moves in a straight line. How far does the particle move from t = 0 to t = 2?
 - (A) $e^2 1$ (B) e 1 (C) 2e (D) e^2 (E) $\frac{e^3}{3}$
- 17. Find the average value of $y = \sqrt[3]{x+3}$ on the interval [-3, -2]
 - (A) 0.681 (B) 0.75 (C) 0.909 (D) 1.282 (E) 2.280
- 18. Calculate the approximate area of the shaded region in the figure by the trapezoidal rule, using divisions at $x = \frac{4}{3}$ and $x = \frac{5}{3}$.
 - (A) $\frac{50}{27}$ (B) $\frac{251}{108}$ (C) $\frac{7}{3}$ (D) $\frac{127}{54}$ (E) $\frac{77}{27}$

19. The function f is continuous on the closed interval [2, 8] and has values that are given in the table. Using the subintervals [2, 5], [5, 7], and [7, 8], what is the trapezoidal approximation of $\int_{2}^{8} f(x) dx$?

x	2	5	7	8
f(x)	10	30	40	20

(A) 110 (B) 130 (C) 160 (D) 190 (E) 210

20. During the worst 4-hour period of a hurricane the wind velocity, in miles per hour, is given by $v(t) = 5t - t^2 + 100$, $0 \le t \le 4$. The average wind velocity during this period (in mph) is

(A) 10 (B) 100 (C) 102 (D) 104.667 (E) 108.667

21. If a factory continuously dumps pollutants into a river at the rate of $\frac{\sqrt{t}}{180}$ tons per day, then the amount dumped after 7 weeks is approximately

(A) 0.07 ton (B) 0.90 ton (C) 1.55 tons (D) 1.9 tons (E) 1.27 tons

Answers:						
1. B	2. A	3. B	4. E	5. E	6. B	7. D
8. D	9. E	10. B	11. D	12. D	13. C	14. B
15. D	16. A	17. B	18. D	19. C	20. D	21. E