Chapter 2: Key Concept: The Derivative Practice Test

Name \qquad
LT \#1 and LT \#3: I can calculate the average velocity or average rate of change on a given time interval using a table, a graph or an algebraic rule and show a graphical representation of the meaning of this calculation.

1. At time t in seconds, a particle's distance $s(t)$ in cm , from a point is given in the table.

t	0	3	6	10	13
$s(t)$	0	72	92	144	180

a. What is the average velocity of the particle from $t=6$ to $t=10$? Show your calculation.
b. Indicate what you have found graphically with a secant
 line.
c. Draw a slope segment on the graph to represent $s^{\prime}(6)$
2. For $f(x)=\ln \left(x^{2}+7\right)$, what is the average rate of change of this function between $x=1$ and $x=3$. Show the calculation that leads to your answer. Your answer should be accurate to 3 decimal places.
3. For $f(x)=\ln \left(x^{2}+7\right)$, what is the instantaneous rate of change of this function at $x=2.5$? Your answer should be accurate to $\mathbf{3}$ decimal places.

LT \#2: I can approximate instantaneous velocity or instantaneous rate of change at a given point using a table or an algebraic rule. I know how to use a graphing calculator efficiently for this type of calculation.
4. For $s(t)=3 \mathrm{e}^{t}-1$, find the average velocity between $t=2$ and $t=2+h$ if:
(Report answers accurate to three decimal places.)
a. $\quad h=0.1$
b. $h=0.01$
c. $h=0.001$

LT \#4: I can use $\frac{d y}{d x}$ on a graphing calculator to find the slope of a curve at a point.
For $s(t)=3 \mathrm{e}^{t}-1$, what is $s^{\prime}(2)$? (Use your graphing calculator and the tool: $\frac{d y}{d x}$.) (Report answers accurate to three decimal places.)

Chapter 2: Key Concept: The Derivative Practice Test

Name \qquad
LT \#5: I can sketch the graph of a derivative when given the graph of the function.
5. Sketch the first and second derivative of each function below.

LT \#6: I can interpret the meaning of the function, the first derivative,
 and the second derivative at a point.
6. For some painkillers, the size of the dose, D, given depends on the weight of the patient, W. Thus, $D=f$ (W), where D is in milligrams and W is in pounds.
(A) Interpret the statements $f(140)=120$ and $f^{\prime}(140)=3$ in terms of this painkiller.
(B) What does the statement f " $(140)=-0.5$ tell you about this painkiller?

LT \#7: I can sketch the graph of a function when given a description of the function in terms of continuity, differentiability and signs of the first and second derivatives.
7. Sketch the graph of an even function that is continuous on $[-5,5]$ such that $g(-2)=1, g(0)=3$, and $g(5)=7$. On $[-5,-3] g^{\prime}(x)<0$ and $g^{\prime \prime}(x)>0$. On $[-3,0], g^{\prime}(x)>0$ and $g^{\prime \prime}(x)<0$.

LT \#8: I can state what it means for a function to be differentiable at a point both graphically and algebraically.
8. List five types of points of non-differentiability.
9. Sketch an example of each type of point of non-differentiability.

