## POLYNOMIAL FUNCTION INEQUALITY:

$$f(x) = A(x+5)^{2}(x+2)(x)(x-3)^{3}, A > 0$$

Determine end behavior from 7<sup>th</sup> degree with A>0.

Sketch a graph.

Solve 
$$f(x) \ge 0$$
.

State x-intervals for which f(x) >0.



## RATIONAL FUNCTION INEQUALITY:

$$g(x) = \frac{A(x+5)^2(x)}{(x+2)(x-3)^3}, A > 0$$

Solve g(x) inequality using the related polynomial function f(x) (the same one from up above) & the polynomial graph.



$$g(x) = \frac{A(x+5)^{2}(x)}{(x+2)(x-3)^{3}}$$

$$f(x) \text{ is the "related polynomial"}$$

$$for rational function g(x).$$

$$f(x)=A(x+5)^{2}(x+2)(x)(x-3)^{3}$$

For rational function g(x),  $x \neq -2$ , 3 b/c these values cause division by zero. But for all other x-values, g(x) will be positive when f(x) is positive

So  $g(x) \geq 0$  for  $x \in -5$ , (-2,0],  $(3,\infty)$  compare this interval to the solution for  $f(x) \geq 0$ !

What is the difference?