POLYNOMIAL FUNCTION INEQUALITY:

$$
f(x)=A(x+5)^{2}(x+2)(x)(x-3)^{3}, A>0
$$

Determine end behavior from $7^{\text {th }}$ degree with $A>0$.

Sketch a graph.
Solve $f(x) \geq 0$.

State x-intervals for which $f(x) \geq 0$.

for $x \in-5,[-2,0],[3, \infty)$

RATIONAL FUNCTION INEQUALITY:

$$
g(x)=\frac{A(x+5)^{2}(x)}{(x+2)(x-3)^{3}}, A>0
$$

Solve $g(x)$ inequality using the related polynomial function $f(x)$ (the same one from up above) \& the polynomial graph.
State x-intervals for which $f(x) \geq 0$.

$$
g(x)=\frac{A(x+5)^{2}(x)}{(x+2)(x-3)^{3}}
$$

$f(x)$ is the "related polynomial" for rational function $g(x)$.

$$
f(x)=A(x+5)^{2}(x+2)(x)(x-3)^{3}
$$

for $x \in-5,[-2,0],[3, \infty)$
For rational function $g(x), x \neq-2,3$ b/c these values cause division by zero. But for all other x-values, $g(x)$ will be positive when $f(x)$ is positive
$g(x)$ will be positive when $f(x)$ is positive
So $g(x) \geq 0$ for $x \in-5,(-2,0],(3, \infty)$ - Compare this interval to
the solution for $f(x) \geq 0!$
What is the difference? What is the difference?

