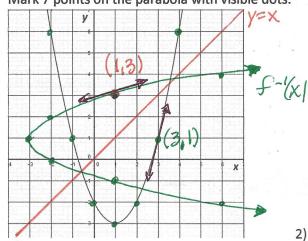
Derivative of Inverse Function Theorem

ANSWER KEY

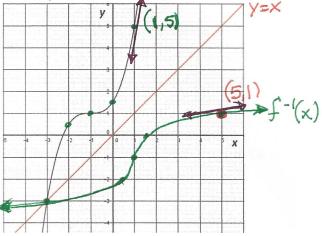
Function and Inverse Pre-requisites:

Given each function, identify key points on the function that fall on lattice points of the coordinate grid.

Mark 7 points on the parabola with visible dots.



Mark 3 points on the cubic with visible dots.



1)

a) Write the equation of each function in (h,k) form and evaluate the function at the given point.

$$V(1-3)$$
 Quadratic function
 $a=1$ $f(x)=((x-1)^2-3)$

$$(3, f(3)) = (3, 1)$$

Cubic function
$$C = \left(\frac{1}{\sqrt{1}} \right) \left(\frac{1}{\sqrt{1}} \right) = f(x) = \frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \right) = \frac{$$

$$(1,f(1)) = (1,5)$$

b) For each function, list the operations on x that yield y.

INVERSE

c) Write inverse equations by using the list in (b) & applying inverse operations in reverse order on x. State the corresponding inverse coordinate from the point on the function in part (a)

$$f^{-1}(x) =$$

$$+ (x+3) + 1$$

$$(x,f^{-1}(x)) = (13)$$

$$f^{-1}(x) = 3$$

$$2(\times -1)^{n} - 1$$

$$(x, f^{-1}(x)) = (5, 1)$$

d) Accurately, sketch the inverse function on the coordinate grid using the key lattice points Label $f^{-1}(x)$

e) Find the derivative of the function at the specified point.

Find the derivative of its inverse at the corresponding point on the inverse.							
$f^{j}(x) = 2(x-1)$	$\left \frac{dy}{dx}\right = 2(2) = 4$	$f^{2}(x) = \frac{3}{2}(x+1)^{2}$	$\left \frac{dy}{dy} \right = \frac{3}{2} \left(4 \right) = 6$				
(3,1)	$\left dx \right _{x=3}$	(15)	$\left dx \right _{x=1}$				
$(f^{-1})^{\mathfrak{I}}(x) =$	$\left(f^{-1}\right)'\left(\underline{1}\right) = \underline{1}$	$(f^{-1})'(x) = 2$	$(f^{-1})'(\underline{5}) =$				
2 X+3 (1,3)	2/4 = 4	3(2(X-1))3 (5,1)	3(3/8)2= 2 = 1				

f) What is the relationship between the derivative value of the function at the point and its inverse at the corresponding inverse point?

AB Calculus - Supplement Derivative of the Inverse of a Function ANSWER KEY

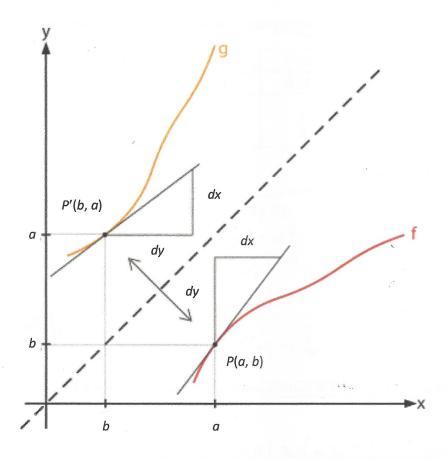
Class/Period:

Suppose that f and g are inverse functions. What is the relationship between their derivatives?

- Algebraically: inverses are obtained by interchanging the x and the y coordinates and solving for y.
- Graphically: inverses are a reflection of the graph on the line y = x.

If f passes through the point (a, b), then the slope of the curve at x = a is represented by f'(a) and is represented by the ratio of the change in y over the change in x, $\frac{\Delta y}{\Lambda r}$.

When this figure is reflected on the line y = x, we obtain the graph of the inverse f^{-1} and this passes through the point (b, a), with the horizontal and vertical sides of the slope triangle interchanged. So the slope of the line tangent to the graph of f^{-1} at x = b is represented by the change in x over the change in y, $\frac{\Delta x}{\Delta x}$. This is the reciprocal of the slope of f at x = a.



http://demo.activemath.org/ActiveMath2/LeAM calculusPics/DerivInverseFunction.png?lang=en

Given (a, b) is a point on f, and g is the inverse of f,

If f'(a) = m, then $g'(b) = \frac{1}{m}$.

= Pointon g(x) (b,a)

The derivative of the inverse of a function at a point is the reciprocal of the derivative of the function at the corresponding point.

§ 3.6 Derivative of Inverse Function ANSWER KEY

AB Calculus - Supplement

Derivative of the Inverse of a Function

Examples: DECODE

1) If f(7) = 1 and f'(7) = 5, and g is the inverse of f, then what is g'(1)?

$$f(x):(7,1) \longrightarrow g(x):(1,7)$$

 $f'(7)=5$
 $g'(x)=\frac{1}{5}$

RECIPRO CALS

2) Given f(-2) = 5, f'(-2) = 6, f'(5) = 3 and g is the inverse of f, what is g'(5)?

$$f(x): (-2,5) \longrightarrow g(x): (5,-2)$$

 $f'(-2)=6$
 $g'(5)=\frac{1}{6}$

3) A function f and its derivative are shown on the table. If g is the inverse of f, find g'(4) and g'(-1).

f(x): (-3,4)	x	f(x)	f'(x)	g(x): (4,-3)
f'(-3)=4	-3	4	0.25	g'(4)= 1 =4
f(x): (2,-1)	2	-1	$-\frac{2}{3}$	g(x):(-1,z)
f'(2) = -23				9'(-1) = -3/2

4) Let $f(x) = \sqrt{x}$, and let g be the inverse function. Evaluate g'(3).

f(x) = Jx - INVERSES	$g(x) = x^2$
f(9)=3 f(x):(9,3) ◀	g(3) = 9 g(x): (3,9)
$f'(x) = \frac{1}{2\sqrt{x}}\Big _{x=q}$	g'(x)=2x x=3
f'(9)= = = PEUDROCAN	¥ g'(3) = 6

5) If f(2) = -3, $f'(2) = \frac{3}{4}$, and g is the inverse of f, what is the equation of the tangent line to g(x) and x = -3?

$$f(z) = -3$$

 $f(x) : (2,-3)$ $\Rightarrow g(x) : (-3,2)$
 $f(z) = \frac{3}{4}$
 $g'(-3) = \frac{4}{3}$

ATQ EQN OF TAN. LINE: [Y= 4 (X+3)+2]
on g(x) @ x=-3

236 Pervative of Inverse Function

ANSWER KEY HWDAYES

AB Calculus - Supplement

Derivative of the Inverse of a Function

6) The following figure shows f(x) and $f^{-1}(x)$. Using the given table, find:

(a)	$f(2), f^{-1}(2), f'(2), (f^{-1})'(2).$	 f(2) = 4	f-1(2)=1	_
)		9'(2)=2.8	(f-1) (2) = 1 = 1 = ===========================	2
		= 19	+(1)	

b) The equation of the tangent line at the points P(3, 8) and Q(8, 3).

function of the tangent time at the points
$$f(3,8)$$
 and $g(3,3)$.

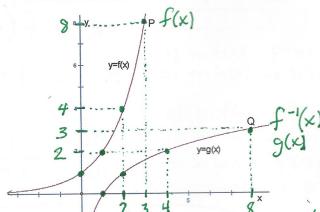
$$f'(3) = 5.5 \quad P(3,8) \qquad (f')^{2}(8) = \frac{1}{f^{2}(3)} = \frac{1}{5.5} = \frac{2}{11}$$

Y= 1/2 (X-3)+8 c) What is the relationship between the two tangent lines?

1=	7 (x-8)+3	of These to
		lines are

invers

x	f(x)	f'(x) = g(x)	
0	1	0.7		
1	2	1.4	-	14-3
2	4	2.8		
3	8	5.5	-7	55 = 1



f(x)=2X f(x)=(1n2)2x/v=3 f'(3)= 23. ln2=8 ln(2)

$$g(x) = f^{-1}(x) = \log_{2}(x)$$

$$g(x) = f^{-1}(x) = \log_{2}(x)$$

$$g(x) = f^{-1}(x) = \frac{\ln(x)}{\ln(2)}$$

$$g'(x) = (f^{-1})^{2}(x) = \frac{1}{x \cdot \ln(2)} |_{x=8}$$

7) Calculate g'(1), where g(x) is the inverse of the function $f(x) = x + e^x$ without solving for g(x).

(A) $f(x) = x + e^x = 1$ $f(x) = x + e^x = 1$ f(x) = 0(B) $f(x) = 1 + e^x = 1$ (C) $f'(x) = 1 + e^x = 1$ (D) $g'(1) = 1 + e^x = 1$

$$f(x) = x + e^{x} = 1$$

 $x = 0$ © $f'(x) = 1 + e^{x}$ $g(1) = 0$ $g'(1) = \frac{1}{2}$
 $f'(0) = 1 + 1 = 2$ reciprocal $g'(1) = \frac{1}{2}$

8) Calculate g'(x), where g(x) is the inverse of the function $f(x) = x^3 + 1$ without solving for g(x).

$$f(x) = x^3 + 1$$
 $f'(x) = 3x^2$

RELIPROCAL $g'(x) = \frac{1}{3x^2}$

- 9) Let $f(x) = \frac{1}{4}x^3 + x 1$. Assume that f(x) is one-to-one.

 The meaning f(x) has an inverse that is a function.
 - f-1(3)=? :. Solve f(x)=3= \frac{1}{4}x^3+x-1: \frac{1}{4}x^3+x-4=0 (T) x=2 a. What is the value of $f^{-1}(x)$ when x = 3?
 - b. Find the slope of the tangent line to the curve $y = f^{-1}(x)$ at x = 3.

$$y = \frac{1}{4}(x-3) + 2$$

$$f'(x) = 3 f'(3) = 2$$

$$f'(x) = \frac{3}{4}x^{2} + 1 (f'')^{3}(3) = \frac{1}{4}$$

$$f'(2) = 4$$

Penhative of trivose Function

AB Calculus - Supplement

Derivative of the Inverse of a Function

Keys to Properly Solving Derivative of an Inverse Problems:

- First, identify the point (a, b) on the function f using whatever information is given.
- Differentiate f.
- Take the reciprocal of the derivative of f. This is the derivative of f^{-1} .
- Evaluate the derivative of f^{-1} at the point (b, a).

Practice:

Given the following values for differentiable functions f and g. a(x)

	J(X)	701			
x	f	f'	g	g'	
1	2	1/2	-3	5	
2	3	1	0	4	
3	4	2	2	3	
4	6	5	3	1/2	

a. If
$$h(x) = f^{-1}(x)$$
, what is $h'(4)$? $f(3) = 4$ $f(3) = 4$

b. If
$$h(x) = f^{-1}(x)$$
, what is $h'(2)$? $f(?) = 2$ (1,2) on $f(x)$ $f'(1) = \frac{1}{2}$

b. If
$$h(x) = f^{-1}(x)$$
, what is $h'(2)$? $f(?) = 2$ (1,2) on $f(x)$ $f'(1) = \frac{1}{2}$ (2,1) on $h(x) \longrightarrow h'(2) = \frac{1}{2} = 2$ c. If $d(x) = g^{-1}(x)$, what is $d'(-3)$? (1,-3) on $g(x)$ $g'(1) = 5$ (2,1) on $h(x) \longrightarrow h'(-3) = \frac{1}{g'(1)} = \frac{1}{5}$

And these are not exactly on derivatives of inverses, but they are good practice nonetheless:

d. If
$$p(x) = g^2(x)$$
, what is $p'(3)$? $p'(x) = 2(g(x))^2 \cdot g'(x) : p'(3) = 2(g(3))^2 \cdot g'(3) = 2(2)(3) = 12$
e. If $b = f \cdot g$ what is $b'(2)$? $b' = f \cdot g + f \cdot g' : b'(2) = f'(2)g(2) + f(2) \cdot g'(2)$

e. If
$$b = f \cdot g$$
 what is $b'(2)$? $b' = f \cdot g + f \cdot g' \cdot b'(2) = f'(2)g(2) + f(2) \cdot g'(2) = (1)(6) + (3)(4) = 0 + 12 = 12$

f. If
$$n(x) = f(x^3)$$
, what is $n'(1)$?
 $n'(x) = f'(x^3)(3x^2)$ \therefore $n'(1) = f'(1)(3)(3(1)^2)$

$$= f'(1)(3)$$

$$= (\frac{1}{2})(3) = \frac{3}{2}$$

$$g(x) = f'(x)$$

$$g(x) = y = f'(x)$$

$$x = f(y)$$

$$x = f'(y) \cdot dy$$

$$dx$$

$$\frac{dy}{dx} = \frac{1}{f'(x)}$$

$$g'(x) = \frac{dy}{dx} = \frac{1}{f'(x)}$$