2001 AP Calculus AB-2

The temperature, in degrees Celsius (${}^{\circ}$ C), of the water in a pond is a differentiable function W of time t. The table above shows the water temperature as recorded every 3 days over a 15-day period.

(a)	Use data from the table	to find	an approximation for	W'(12) Show the
(-)	computations that lead		97474	

(b)	Approximate the average temperature, in degrees Celsius, of the water			
	over the time interval $0 \leq t \leq 15$ days by using a trapezoidal			
	approximation with subintervals of length $\Delta t = 3$ days			

(c)	A student proposes the function P , given by $P(t)=20+10te^{(-t/3)}$, as a model for the
	temperature of the water in the pond at time t , where t is measured in days and $P(t)$ is
	measured in degrees Celsius. Find $P'(12)$. Using appropriate units, explain the meaning of
	your answer in terms of water temperature.

(d) Use the function P defined in part (c) to find the average value, in degrees Celsius, of P(t) over the time interval 0 ≤ t ≤ 15 days.

$$W'(12) \approx \frac{W(15) - W(12)}{15 - 12} = -\frac{1}{3}$$
 °C/day or $W'(12) \approx \frac{W(12) - W(9)}{12 - 9} = -\frac{2}{3}$ °C/day or $W'(12) \approx \frac{W(15) - W(9)}{15 - 9} = -\frac{1}{2}$ °C/day

(b)
$$\frac{3}{2}(20 + 2(31) + 2(28) + 2(24) + 2(22) + 21) = 376.5$$

Average temperature $\approx \frac{1}{15}(376.5) = 25.1\,^{\circ}\text{C}$

(c)
$$P'(12) = 10e^{-t/3} - \frac{10}{3}te^{-t/3}\Big|_{t=12}$$

= $-30e^{-4} = -0.549$ °C/day

This means that the temperature is decreasing at the rate of 0.549 °C/day when t=12 days.

(d)
$$\frac{1}{15} \int_0^{15} (20 + 10te^{-t/3}) dt = 25.757 \, ^{\circ}\text{C}$$

$$2: \left\{ \begin{array}{l} 1: \text{ difference quotient} \\ 1: \text{ answer (with units)} \end{array} \right.$$

W(t)

(°C)

20

31

28

24

22

21

t

(days)

3

6

9

12

15

$$2: \begin{cases} 1: \text{trapezoidal method} \\ 1: \text{answer} \end{cases}$$

$$2: \left\{ \begin{array}{l} 1: P'(12) \quad \text{(with or without units)} \\ 1: \text{interpretation} \end{array} \right.$$