## Ch 5 AP FRQs

## 2000 AP Calculus AB-2/BC-2



Two runners, A and B, run on a straight racetrack for  $0 \le t \le 10$  seconds. The graph above, which consists of two line segments, shows the velocity, in meters per second, of Runner A. The velocity, in meters per second, of Runner B is given by the function v defined by  $v(t) = \frac{24t}{2t+3}$ .

- (a) Find the velocity of Runner A and the velocity of Runner B at time t = 2 seconds. Indicate units of measure.
- (b) Find the acceleration of Runner A and the acceleration of Runner B at time t=2 seconds. Indicate units of measure.
- (c) Find the total distance run by Runner A and the total distance run by Runner B over the time interval 0 ≤ t ≤ 10 seconds. Indicate units of measure.

(a) Runner A: velocity = 
$$\frac{10}{3} \cdot 2 = \frac{20}{3}$$

= 6.666 or 6.667 meters/sec

Runner *B*:  $v(2) = \frac{48}{7} = 6.857 \text{ meters/sec}$ 

 $2 \left\{ \begin{array}{l} 1: \text{ velocity for Runner } A \\ 1: \text{ velocity for Runner } B \end{array} \right.$ 

(b) Runner A: acceleration =  $\frac{10}{3}$  = 3.333 meters/sec<sup>2</sup>

Runner B: 
$$a(2) = v'(2) = \frac{72}{(2t+3)^2} \Big|_{\epsilon=2}$$
  
=  $\frac{72}{49} = 1.469 \text{ meters/sec}^2$ 

 $2 \left\{ \begin{array}{l} 1: \text{ acceleration for Runner } A \\ 1: \text{ acceleration for Runner } B \end{array} \right.$ 

(c) Runner A: distance =  $\frac{1}{2}$ (3)(10) + 7(10) = 85 meters

Runner B: distance = 
$$\int_0^{10} \frac{24t}{2t+3} dt = 83.336$$
 meters

answer

(units) meters/sec in part (a), meters/sec<sup>2</sup> in part (b), and meters in part (c), or equivalent. 1: units