1998 AP Calculus AB-3

Traveling Car Problem

t	v(t)
(seconds)	(feet per second)
0 5	0
	12
10	20
15	30
20	55
25	70
30	78
35	81
40	75
45	60
50	72

The graph of the velocity v(t), in ft/sec, of a car traveling on a straight road, for $0 \le t \le 50$, is shown above. A table of values for v(t), at 5 second intervals of time t, is shown to the right of the graph.

- (a) During what intervals of time is the acceleration of the car positive? Give a reason for your answer.
- (b) Find the average acceleration of the car, in ft/sec^2 , over the interval $0 \le t \le 50$.
- (c) Find one approximation for the acceleration of the car, in ft/sec^2 , at t=40. Show the computations you used to arrive at your answer.
- (d) Approximate $\int_0^{50} v(t) dt$ with a Riemann sum, using the midpoints of five subintervals of equal length. Using correct units, explain the meaning of this integral.
- (a) Acceleration is positive on (0, 35) and (45, 50) because the velocity v(t) is increasing on [0, 35] and [45, 50]

$$\mathbf{3} \begin{cases} 1: & (0,35) \\ 1: & (45,50) \\ 1: & \text{reason} \end{cases}$$

Note: ignore inclusion of endpoints

(b) Avg. Acc. =
$$\frac{v(50) - v(0)}{50 - 0} = \frac{72 - 0}{50} = \frac{72}{50}$$

or 1.44 ft/sec²

1: answer

$$\frac{v(45) - v(40)}{5} = \frac{60 - 75}{5} = -3 \text{ ft/sec}^2 \text{ or}$$

$$\frac{v(40) - v(35)}{5} = \frac{75 - 81}{5} = -\frac{6}{5} \text{ ft/sec}^2 \text{ or}$$

$$\frac{v(45) - v(35)}{10} = \frac{60 - 81}{10} = -\frac{21}{10} \text{ ft/sec}^2$$

$$\begin{array}{c}
\mathbf{2} \\
1: \text{ method} \\
1: \text{ answer}
\end{array}$$

Note: 0/2 if first point not earned

Slope of tangent line, e.g. through (35, 90) and (40, 75): $\frac{90-75}{35-40} = -3 \text{ ft/sec}^2$

(d)
$$\int_{0}^{50} v(t) dt$$

$$\approx 10[v(5) + v(15) + v(25) + v(35) + v(45)]$$

$$= 10(12 + 30 + 70 + 81 + 60)$$

$$= 2530 \text{ feet}$$

This integral is the total distance traveled in feet over the time 0 to 50 seconds.