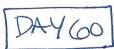
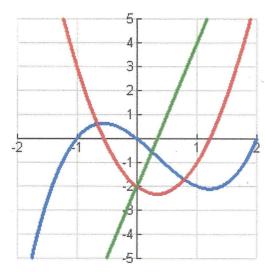


§4.1 & §4.2—Day 2—Student Notes—Using the First and Second Derivatives





$$f(x) = x^3 - x^2 - 2x$$

$$f'(x) = 3x^2 - 2x - 2$$

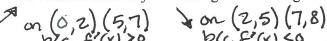
$$f''(x) = 6x - 2$$

f'	f"
1. Positive: f is <u>Increasing</u>	f">0 1. Positive: f' is <u>Increasing</u>
	f is concave up
f'<0 2. Negative: f is decreasing	f"20 2. Negative: f' is decreasing
	f is concave down
f'=0 3. Intercepts: <u>extrema</u> on f rel max rel min	3. Intercepts: extrema on f' inflection pts on f
4. Max/Min: points on f	
5. Slope = f">0 5. Slope is positive: <u>conc up</u> on f v <u>positive</u> on f">0	
f'slope = f"\langle \tilde{0} 6. Slope is negative: conc downon f \tilde{\chi}	
negative on f"<0	

ANSWERS

Example 1: The graph of the derivative f' of a continuous function f is shown on the interval [0,8]:

On what intervals is f increasing or decreasing?



At what values of x does f have a local maximum or b. minimum?

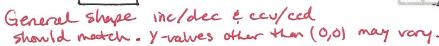
MAX
$$C \times = 2,7$$
 MIN $C \times = 5$ b/c f'changes $C \mapsto C$. On what intervals is f concave upward or downward?

c.

on
$$(4,6)$$
 $(6,8)$ $(6,8)$ $(6,8)$ $(6,8)$ State the x -coordinates of the points of inflection.

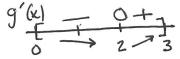
d.

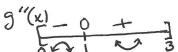
Assume that f(0) = 0, sketch the graph of f. e.



The given graph is g', state several facts about g and g"

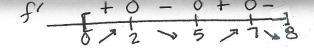
g(2) rel min b/c g' changes Θ to \oplus . g'(x)

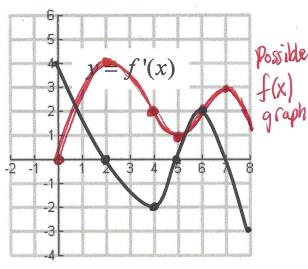




Problems involving the first and second derivative

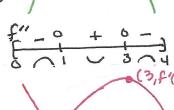
1) Find the critical numbers of each function:





The given graph is f , state several facts about

(1,f(1)) is Point ble f" changes ()+1) $f_{\text{and}} f'$ (3, f(3)) is Tout b/cf" changes ⊕ to ⊖



f'(x) is decreasing on (-00,1) (3,00)

f'(x) is increasing on (1,3)

fr has a max et (1,f(1))

f'(x) f' has a min at (3, f(3)) (1,5(1))

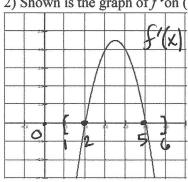
b)
$$f(x) = (x-3)^{\frac{2}{5}}$$

 $f'(x) = \frac{2}{5}(x-3)^{-\frac{3}{5}} = \frac{2}{5(x-3)^{\frac{3}{5}}}$

$$f'(x) = 0$$
 $f'(x)$ undefined $ex=3$

ANSWERS

2) Shown is the graph of f^{3} on (1,6). Find the intervals on which f is increasing or decreasing.

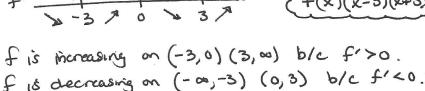


fis increasing on (2,5) b/c f'(x)>0 f is decreasing on (1,2), (5,6) b/c f(x) <0.

3) Find the open intervals on which $f(x) = (x^2 - 9)^{\frac{2}{3}}$ is increasing or decreasing. No calculator. $f'(x) = \frac{2}{3}(x^2 - 9)^{-\frac{1}{3}}(2x) \qquad \qquad f''(x) = \frac{2}{3}(x^2 - 9)^{-\frac{1}{3}}(2x) \qquad \qquad f$ f'(x) = 4x 3[(x-3)(x+3)]/3

$$f'(x) = \frac{4x}{3[(x-3)(x+3)]'3}$$

$$f'(x) = 0$$
 $e^{-x} = 0$ $f'(x)$ and $e^{-x} = \pm 3$



4) The derivative of a function f is given as $f'(x) = \cos(x^2)$. Use a calculator to find the values of x on

 $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$ such that f is increasing.

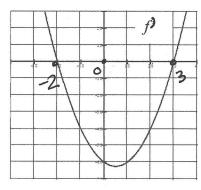
$$f'(x) = \cos(x^2) \rightarrow Y$$
, on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

f'(x) =0 € X=± 1.2533141

f(x) is increasing on (-1.253, 1.253)

RADIAN MODE

5) The graph of f', the derivative of a function f is shown. Find the relative extrema of f. Justify your answer.



fix changes sign of to @ @ x = - Z

: f(-2) is a relative max.

f'(x) changes sign ⊕ to ⊕ @ x=3

: f(3) is a relative min.