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§4.1 & § 4.2—Student Notes—Using the First and Second Derivatives

Definition A function fhas an absolute maximum (or global maximum) at ¢ if f(c)> f(x) forallxin D,
where D is the domain of . The number f(c) is called the maximum value of fon D. Similarly, the function f

has an absolute minimum (or global minimum) at ¢ if f (c) < f(x) for all x in D and the number f(c) is called
the minimum value of fon D. The maximum and minimum values of fare called the extreme values of /.

Definition A function fhas an local maximum

(or relative maximum) at ¢ if f(c)2> f(x) whenx i AbSCF'uie Max
is near c. [This means that f(c)> f(x) forall x Local Max Loc‘al‘ ij rFa
in some open interval containing c.] Similarly, the e '
function f'has an local minimum at ¢ if , /
< h i , in ‘, H
f(¢)< f(x) when xis near ¢ Local Min e . Local Min 9

Example 1: Use the graph to state the absolute
and local max/min values
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Example 2: Describe the maximum and minimum, local and absolute, for the following functions:

a. f(x)=cosx b. f(x)=x?
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Definition A critical number of a function fis a number ¢ in the domain of fsuch that either f'(c)=0 or f'(c)
does not exist (DNE).

Theorem If fhas a local maximum or minimum at ¢, and if f'(c) exists, then f'(c)=0.
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Example 3: Find the critical numbers of f(x)=x° (4 - x) .
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Increasing/Decreasing Test - lep. x= 0, ‘éi_
(@) If f'(x)>0 on an interval, then fis increasing on that interval €

(b) If f'(x) <0 on an interval, then fis decreasing on that interval

First Derivative Test Suppose that c is a critical number of a continuous function f.
(a) If f' changes from positive to negative at c, then fhas a local maximum at c.

(b) If /' changes from negative to positive at c, then fhas a local minimum at c.

(c) If f' does not change sign at c, (thatis, /" is positive on both sides of ¢ or negative
on both sides), then fhas no local maximum or minimum at c.

Example 4: Use calculus to find the absolute and relative minimum and maximum values of the function

Inx
f(x)y=—, onthen check your results using your calculator. -
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Definition If thé ¢ é?‘aph of flies above all of its tangents on an interval /, then it is called concave upward on . If
the graph of flies below all of its tangents on an interval 7, then it is called concave downward on /.

Concavity Test
(a) If f"(x)>0 for all x on 7, then the graph of fis concave upward on .

(b) If f"(x)<0 for all x on 7, then the graph of fis concave downward on 1.




Test for Concavity:
A function ---is concave up when f "(x) >0 Cueve sappacts ruless
--- is concave down when f"(x) < 0 Concave Downwoasd

--- has no concavity when f"(x) =0
--- may have a possible point of inflection if f “(x) = 0.
- will have a point of inflection if f "(x} = 0 and changes signs.
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Second Derivative Test Suppose f” is continuous near c.
(@ If f'(c)=0and f"(c)> 0, then fhas a local minimum at c.
(b) If f'(c)=0and f"(c) <0, then fhas a local maximum at c.
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Example 5. Given g(x) =x+2sinx 0Zx<27  usethe 4
second Derivative Test to find the relative extrema and then find the 5
intervals concavity, points of inflection, and use the information to 1
sketch the curve.
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Example 6: Given 2(x)=x+2sinx 0 <x <27 find the intervals concavity, points of inflection, and
use the intervals of increasing/decreasing and local maxima and minima to sketch the curve.
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