Derivative of Inverse Function Theorem

ANSWER KEY

Function and Inverse Pre-requisites:

Given each function, identify key points on the function that fall on lattice points of the coordinate grid.

Mark 7 points on the parabola with visible dots.

Mark 3 points on the cubic with visible dots.

a) Write the equation of each function in (h,k) form and evaluate the function at the given point. Under the function $(x) = (x-1)^2 - 3$ $(x) = (x-1)^2 - 3$ (x) =

$$\begin{array}{c} V(1-3) \text{ Quadratic function} \\ a=1 & f(x)=\left((x-1)^2-3\right) \end{array}$$

$$(3, f(3)) = (3, 1)$$

Cubic function
$$C = X(1)$$

$$f(x) = \frac{1}{2}(x+1)^{3} + \frac{1}{2}$$

$$(1,f(1))=$$

$$(1,5)$$

b) For each function, list the operations on x that yield y.

INVERSE c) Write inverse equations by using the list in (b) & applying inverse operations in reverse order on x. State the corresponding inverse coordinate from the point on the function in part (a)

$$f^{-1}(x) = \underbrace{+ \left(\times +3 \right) + 1}$$

$$(x, f^{-1}(x)) = (13)$$

$$\frac{f^{-1}(x)=}{\sqrt[3]{2(\times-1)}}$$

$$(x, f^{-1}(x)) = (5, 1)$$

d) Accurately, sketch the inverse function on the coordinate grid using the key lattice points. Label $f^{-1}(x)$.

e) Find the derivative of the function at the specified point. Find the derivative of its inverse at the corresponding point on the inverse

This the derivative of its inverse at the corresponding point on the inverse.				
f'(x) = 2(x-1)	$\frac{dy}{dt} = 2(2) = 4$	$f^{3}(x) = \frac{3}{2}(x+1)^{2}$	$\left \frac{dy}{dt} \right = \frac{3}{2} (4) = 6$	
(3,1)	$\left dx \right _{x=3}$	(15)	$\left dx \right _{x=1}$	
$(f^{-1})^{\mathfrak{I}}(x) = $	$(f^{-1})'(\underline{1}) = \underline{1}$	$(f^{-1})'(x) = 2$	$(f^{-1})'(\underline{5}) =$	
2 (x+3 (1,3)	2/4 = 4	$3(2(x-1))^3$	3(3/8)2= 2 3(4) 6	

f) What is the relationship between the derivative value of the function at the point and its inverse at the corresponding inverse point?

AB Calculus - Supplement **Derivative of the Inverse of a Function**

ANSWER KE

Class/Period:

Suppose that f and g are inverse functions. What is the relationship between their derivatives?

- Algebraically: inverses are obtained by interchanging the x and the y coordinates and solving for y.
- Graphically: inverses are a reflection of the graph on the line y = x.

If f passes through the point (a, b), then the slope of the curve at x = a is represented by f'(a) and is represented by the ratio of the change in y over the change in x, $\frac{\Delta y}{\Delta x}$.

When this figure is reflected on the line y = x, we obtain the graph of the inverse f^{-1} and this passes through the point (b, a), with the horizontal and vertical sides of the slope triangle interchanged. So the slope of the line tangent to the graph of f^{-1} at x = b is represented by the change in x over the change in y, $\frac{\Delta x}{\Delta y}$. This is the reciprocal of the slope of f at x = a.

http://demo.activemath.org/ActiveMath2/LeAM_calculusPics/DerivInverseFunction.png?lang=en

Given (a, b) is a point on f, and g is the inverse of f,

If
$$f'(a) = m$$
, then $g'(b) = \frac{1}{m}$.

=- Pointon g(x) (b,a)

The derivative of the inverse of a function at a point is the reciprocal of the derivative of the function at the corresponding point.

23.6 Derivative of Inverse Function ANSWER KEY

AB Calculus - Supplement

Derivative of the Inverse of a Function

Examples: DECOOE

1) If f(7) = 1 and f'(7) = 5, and g is the inverse of f, then what is g'(1)?

$$f(x):(7,1) \longrightarrow g(x):(1,7)$$

 $f'(7)=5$ $g'(x)=\frac{1}{5}$

2) Given f(-2) = 5, f'(-2) = 6, f'(5) = 3 and g is the inverse of f, what is g'(5)?

$$f(x): (-2,5) \longrightarrow g(x): (5,-2)$$

 $f'(-2)=6$
 $g'(5)=\frac{1}{6}$

3) A function f and its derivative are shown on the table. If g is the inverse of f, find g'(4) and g'(-1). Recurrence

f(x): (-3,4)	x	f(x)	f'(x)
f'(-3)=1	-3	4	0.25
f(x): (2,-1)	2	-1	$-\frac{2}{3}$
f'(2) = -2/			

- 9(x): (4,-3) g (4)= 1 =4 9(x):(-1,2) * 9 (-1) = -3
- 4) Let $f(x) = \sqrt{x}$, and let g be the inverse function. Evaluate g'(3).

, , , , , ,	6 ()
f(x) = Jx · INVERSES	$g(x) = x^2$
f(9)=3 f(x):(9,3) ◀	g(3) = 9 g(x): (3.9)
$f'(x) = \frac{1}{2\sqrt{x}}\Big _{x=q}$	g'(x)=2x x=3
f(9)====================================	7(3)

5) If f(2) = -3, $f'(2) = \frac{3}{4}$, and g is the inverse of f, what is the equation of the tangent line to g(x) and x = -3?

$$f(z) = -3$$

 $f(x) : (2,-3)$ $\Rightarrow g(x) : (-3,2)$
 $f(z) = \frac{3}{4}$
 $g'(-3) = \frac{4}{3}$