DAY 1:

1) Describe the population and its behavior given by the function: $C(t)=150(1.045)^{t}$ Write the function above in the form: $f(t)=a e^{k t}$.
2) There is a population of 23,450 insects, infected by a disease causing the population to halve every 6 months. Write an equation representing this scenario.
HINT: Write the equation is the population halves annually then modify this equation.
3) Solve each equation for all solutions:
A) $x^{2}=3$
B) $\tan ^{2}(\theta)=3$
4) Given coordinate points $(p, q) \&(v, w)$ write a linear equation in point-slope form.
5) Solve for $\mathrm{x}: \ln (x)-\ln (x+3)=1$
6) Find the inverse of $f(x)=x^{2}+2 x-3$. Hint: vertex form
7) Given the graph of $f(x)$, identify:
$f(-1)$
Domain:
Range:

Under the transformation given by

A) $h(x)=\frac{1}{3} f\left(\frac{1}{2}(x+1)\right)-4$

Identify $h(-1)$:
Domain of $h(x)$:
Range of $h(x)$:
B) $g(x)=2 f(3(x-4))+5$

Identify $g(-1)$
Domain of $g(x)$:
Range of $g(x)$:

