\qquad
DUE at end of period TODAY! (period.)
Warm-Up:
For any (x, y) point on a circle of radius r whose center is at the origin $(0,0)$, use the distance formula or the Pythagorean Identity to write an equation for the distance between the origin and the point (x, y).
\square

For any (x, y) point on a circle of radius r whose center is at the point (h, k), use the distance formula to write an equation for the distance between the point (h, k) and the point (x, y).
\square

Cúrcles:

A circle is the set of all points equidistant (a fixed radius distance $\underline{\mathbf{r}}$) from a center point.

$$
(h, k) \text { form: } \quad(x-h)^{2}+(y-k)^{2}=r^{2} \quad \frac{(x-h)^{2}}{r^{2}}+\frac{(y-k)^{2}}{r^{2}}=1
$$

expanded form derived from (h, k) form:

$$
\begin{aligned}
& \left(x^{2}-2 h x+h^{2}\right)+\left(y^{2}-2 k y+k^{2}\right)=r^{2} \\
& x^{2}+y^{2}-(2 h) x-(2 k) y+\left(h^{2}+k^{2}-r^{2}\right)=0 \\
& (A) x^{2}+(C) y^{2}+(D) x+(E) y+(F)=0
\end{aligned}
$$

To graph the circle if its equation is in standard form, complete the square to write the equation in (h, k) form.
Examples: Write the equations of the circles in (h, k) form

1.

H.W. Exercises.

5. In the desert, irrigation sprinklers rotate forming circular fields for crops. If the field has an area of $748,225 \pi$ square yards (or approximately $\approx 2,350,618$ square yards),
a) Write an equation for the circular boundary of the field assuming the center of the field is at the origin. Show work to justify your answer.
b) Calculate the circumference of the circular field. Show work to justify your answer.

c) If you are out surveying the crops and your current position is given, are you
i) inside the circular field?
ii) on the perimeter (circumference) of the field?
iii) outside the field? Show work to justify your answer.

A)800 yds East 100 yds North	B)850 yds West 100 yds South	C)860 yds West 150 yds North

6. Write the equation of the circle in (h, k) form with the given characteristics

A	center: $(-7,3)$ radius: $r=8$	
B	center: $(-2,5)$ area: 81π	
C	diameter with endpoints at $(3,8)$ and $(9,16)$	
D.	center at the point located $\frac{1}{3}$ of the way from pt A:(6,-1) toward pt B:(30, -13$)$ with radius half the length of the $\overline{\mathrm{AB}}$.	

8. Complete the square to find the equation of the circle in (h, k) form.

9. Sketch all of the possible scenarios and state how many intersection points exist for each. You may need more or fewer spaces to show all scenarios.

A line and a parabola				

Parabolas:

A parabola is the set of all points equidistant from a line called the directrix and a point called the focus.

$$
\begin{array}{ll}
y=a(x-h)^{2}+k & x= \\
(y-k)=a(x-h)^{2} & \left(x-_\right)^{2}=
\end{array}
$$

The value p represents the distance from vertex to focus and vertex to directrix line. In the parabola equation p is determined by the coefficient in front of the $(x-h)$ term or the $(y-k)$ term as follows:

$$
(y-k)=\left[\frac{1}{4 p}\right](x-h)^{2} \quad[4 p](y-k)=(x-h)^{2}
$$

For the graphs in the warm-up find the value of p, the focus and directrix line. Add these to the graphs.

1) Write equations for each parabola in (h, k) form: $y=a(x-h)^{2}+k$
A) \qquad
B) \qquad
C) \qquad

Focus: \qquad Focus: \qquad
Vertex: \qquad
Directrix: \qquad
Vertex: \qquad
Directrix: \qquad
Directrix: \qquad

Vertex: \qquad
Focus: \qquad

2) Write equations for each parabola in (h, k) form:
C)

$$
\overline{a=}
$$ $\therefore p=$ \qquad

Directrix: \qquad
Vertex: \qquad
Focus: \qquad

D)
$a=\ldots p=\ldots$

Directrix:

\qquad
Vertex: \qquad
Focus: \qquad

E)
$a=$ \qquad
Focus: \qquad
Vertex: \qquad
Directrix: \qquad

H.W. Exercises.

1. Complete the square to write each parabola in (h, k) form. Identify Vertex, Focus, Directrix line.

A. $x=3 y^{2}+18 x+29$	B. $x=\frac{-1}{4} y^{2}-2 y-7$	C. $y=\frac{-1}{12} x^{2}+\frac{2}{3} x+\frac{11}{3}$

2. Identify the vertex and the focal point then write an equation for the parabola and the directrix line.

3. The filament of a light bulb is a thin wire that glows when electricity passes through it. The filament of a car headlight is at the focus of the parabolic reflector, which sends light out in a straight beam (parallel to the axis of symmetry of the parabolic cross section of the reflector). Given that the filament is 1.5 inches from the vertex, find an equation for the cross section of the reflector. If the reflector is 7 inches wide, how deep is it? (page 599 \#79)

in.

Ellöpses: An ellipse is the set of all points

$F_{1} \mathbf{P}+F_{2} \mathbf{P}=$ constant

(h, k) form: $\quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad$ where $a>b$

$$
\text { or } \quad \frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1 \quad \text { where } a>b
$$

expanded form derived from (h, k) form:

$$
\begin{gathered}
b^{2}(x-h)^{2}+a^{2}(y-k)^{2}=a^{2} b^{2} \\
b^{2}\left(x^{2}-2 h x+h^{2}\right)+a^{2}\left(y^{2}-2 k y+k^{2}\right)=a^{2} b^{2} \\
b^{2} x^{2}+a^{2} y^{2}-b^{2}(2 h) x-a^{2}(2 k) y+\left(b^{2} h^{2}+a^{2} k^{2}-a^{2} b^{2}\right)=0 \\
(A) x^{2}+(C) y^{2}+(D) x+(E) y+(F)=0
\end{gathered}
$$

$(h, k)=$ coordinate of center $a=$ distance from center to major axis vertices
$b=$ distance from center to minor axis co-vertices $c=$ distance from center to foci ("fo-sigh") which are on the major axis

Complete the square to identify all key features of the ellipse.

3. $225 x^{2}+144 y^{2}-450 x+864 y-30879=0$	4.	$25 x^{2}+169 y^{2}+200 x-676 y-3149=0$
Graph. Label center, vertices, co-vertices, and foci.	Graph. Label center, vertices, co-vertices, and foci.	

Hyperbolas: A hyperbola is the set of all points in a plane whose distances from two fixed points differ by a constant.

```
F1P- F2P = constant
```

(h, k) form: $\quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

$$
\text { or } \quad \frac{(y-k)^{2}}{b^{2}}-\frac{(x-h)^{2}}{a^{2}}=1
$$

expanded form derived from (h, k) form:

$$
\begin{gathered}
b^{2}(x-h)^{2}-a^{2}(y-k)^{2}=a^{2} b^{2} \\
b^{2}\left(x^{2}-2 h x+h^{2}\right)-a^{2}\left(y^{2}-2 k y+k^{2}\right)=a^{2} b^{2} \\
b^{2} x^{2}-a^{2} y^{2}-b^{2}(2 h) x+a^{2}(2 k) y+\left(b^{2} h^{2}-a^{2} k^{2}-a^{2} b^{2}\right)=0 \\
(A) x^{2}+(C) y^{2}+(D) x+(E) y+(F)=0
\end{gathered}
$$

$(h, k)=$ coordinate of center $a=$ distance from center to transverse axis vertices
$b=$ distance along the conjugate axis
$c=$ distance from center to foci ("fo-sigh") which are on the transverse axis

Hyperbolas

1.

Equation: \qquad
Center: \qquad $\mathbf{a}=$ \qquad b $=$ \qquad $\mathbf{c}=$ \qquad
Relationship between $\mathrm{a}, \mathrm{b}, \& \mathrm{c}$: \qquad

Transverse axis: \qquad

Conjugate Axis: \qquad
Vertices on the Transverse Axis:

Foci (pronounced "fo-sigh"; plural of focus) Focal points along the transverse axis:

Asymptotes:

2. Equation: \qquad
Center: \qquad $\mathbf{a}=$ \qquad b $=$ \qquad $\mathrm{c}=$ \qquad
Relationship between $\mathrm{a}, \mathrm{b}, \& \mathrm{c}$: \qquad
Transverse axis: \qquad
Conjugate Axis: \qquad
Vertices on the Transverse Axis:

Foci (pronounced "fo-sigh"; plural of focus) Focal points along the transverse axis:

Asymptotes:

Complete the square to identify all key features of the hyperbola.

