Problems with *** are CALCULATOR active

1. Which of the following differential equations goes with the slope field shown?
a) $y^{\prime}=-x$
b) $y^{\prime}=-x^{2}$
c) $y^{\prime}=-2 x$
d) $y^{\prime}=2 x$
e) $y^{\prime}=x^{2}$
2. Which of the following differential equations goes with the slope field shown?
a) $y^{\prime}=4 x^{2}+y^{2}$
b) $y^{\prime}=x+y$
c) $y^{\prime}=x^{2}+4 y^{2}$
d) $y^{\prime}=-\frac{x}{2 y}$
e) $y^{\prime}=-\frac{2 x}{y}$

3. Which of the following differential equations goes with the slope field shown?
a) $y^{\prime}=x-y$
b) $y^{\prime}=x+y$
c) $y^{\prime}=x^{2}+y^{2}$
d) $y^{\prime}=\frac{x}{y}$
e) $y^{\prime}=-\frac{x}{y}$

4. Which differentiable equation corresponds to the slope field shown at right?
(A) $\frac{d y}{d x}=x^{2}-y^{2}$
(B) $\frac{d y}{d x}=y^{2}-x^{2}$
(C) $\frac{d y}{d x}=\frac{x}{y}$
(D) $\frac{d y}{d x}=\frac{y}{x}$
(E) $\frac{d y}{d x}=-\frac{x}{y}$

5. Find the equation of a family of curves which are defined by $f^{\prime}(x)=\frac{-2}{(x+1)^{3}}$.
a) $f(x)=(x+1)^{2}+C$
b) $f(x)=\frac{1}{(x+1)^{2}}+C$
c) $f(x)=\frac{3}{(x+1)^{2}}+C$
d) $f(x)=\tan ^{-1}(x+1)+C$
e) $f(x)=(x+1)^{-1}+C$
6. Solve the differential equation $e^{x-y} d y=-d x$.
a) $e^{-x}+e^{y}=C$
b) $e^{-x}+e^{-y}=C$
c) $e^{x}+e^{-y}=C$
d) $2 e^{-x}+e^{-y}=C$
e) $e^{-x}+2 e^{-y}=C$
7. Find the solution of the differential equation $\frac{d y}{d x}=\frac{1}{3} x^{-2 / 3}$ for $f(-8)=0$.
a) $f(x)=x^{1 / 3}-2$
b) $f(x)=x^{1 / 3}+5$
c) $f(x)=x^{1 / 3}+2$
d) $f(x)=x^{2 / 3}+2$
e) $f(x)=x^{2 / 3}+1$
8. Find the solution of the differential equation $x y^{\prime}=y-2$ for $y>2, x>0$, given that the point $(3,8)$ is on the curve.
a) $y=x+2$
b) $y=2 x+2$
c) $y=5 x-2$
d) $y=2 x-2$
e) $y=x-1$
***9. A mold culture doubles its mass every three days. Find the growth model for a plate seeded with 1.2 grams of mold.
a) $y=1.2 e^{0.10034 t}$
b) $y=1.2 e^{0.23105 t}$
c) $y=1.2 e^{0.23856 t}$
d) $y=1.2 e^{0.38761 t}$
e) $y=1.2 e^{0.54931 t}$
9. If h is the inverse function of f and if $f(x)=\frac{1}{x}$, then $h^{\prime}(3)=$
a) -9
b) $-\frac{1}{9}$
c) $\frac{1}{9}$
d) 3
e) 9
${ }^{* * *}$ 11. The population P of a herd is given by $P=2000 e^{k t}$. Let $t=0$ correspond to the year 1998 and suppose the population in 1995 was 1,700 . Use this model to predict the population in 2005.
a) 2,922
b) 2,517
c) 1,815
d) 3,218
e) 2,623
***12. A radioactive element has a half-life of 50 days. What percentage of the original sample is left after 60 days?
a) 25.00%
b) 37.50%
c) 40.21%
d) 43.53%
e) 49.56%
10. Suppose $f(x)=2 x^{3}-3 x$. If $h(x)$ is the inverse function of f, then $h^{\prime}(-1)=$
a) -1
b) $\frac{1}{5}$
c) $\frac{1}{3}$
d) 1
e) 3
11. A stone is thrown at a target so that its velocity after t sec is $(100-20 t) \mathrm{ft} / \mathrm{sec}$. If the stone hits the target in 1 sec , then the distance from the sling to the target is
a) 80 ft
b) 90 ft
c) 100 ft
d) 110 ft
e) 120 ft
12. A solution of the differential equation $y d y=x d x$ is
a) $x^{2}-y^{2}=4$
b) $x^{2}+y^{2}=4$
c) $y^{2}=4 x^{2}$
d) $x^{2}-4 y^{2}=0$
e) $x^{2}=9-y^{2}$
13. The general solution of the differential equation $x d y=y d x$ is a family of
(A) circles
(B) hyperbolas
(C) parallel lines
(D) parabolas
(E) lines passing through the origin
14. The population of a city increases continuously at a rate proportional, at any time, to the population at that time. The population doubles in 50 years. After 75 years, the ratio of the population P to the initial population P_{0} is
(A) $\frac{9}{4}$
(B) $\frac{5}{2}$
(C) $\frac{4}{1}$
(D) $\frac{2 \sqrt{2}}{1}$
(E) none of these
15. If a substance decomposes at a rate proportional to the amount of the substance present, and if the amount decreases from 40 g to 10 g in 2 hours, then the constant of proportionality is
(A) $-\ln 2$
(B) $-\frac{1}{2}$
(C) $-\frac{1}{4}$
(D) $\ln \frac{1}{4}$
(E) $\ln \frac{1}{8}$
*** 19. A cup of coffee at temperature $180^{\circ} \mathrm{F}$ is placed on a table in a room at $68^{\circ} \mathrm{F}$. The differential equation for its temperature at time t is $\frac{d y}{d t}=-0.11(y-68) ; y(0)=180$. After 10 minutes, the temperature (in ${ }^{\circ} F$) of the coffee is
(A) 96
(B) 100
(C) 105
(D) 110
(E) 115
16. According to Newton's law of cooling, the temperature of an object decreases at a rate proportional to the difference between its temperature and that of the surrounding air. Suppose a corpse at a temperature of $32^{\circ} \mathrm{C}$ arrives at a mortuary where the temperature is kept at $10^{\circ} \mathrm{C}$. Then the differential equation satisfied by the temperature T of the corpse t hours later is
(A) $\frac{d T}{d t}=-k(T-10)$
(B) $\frac{d T}{d t}=-k(T-32)$
(C) $\frac{d T}{d t}=32 e^{-k t}$
(D) $\frac{d T}{d t}=-k T(T-10)$
(E) $\frac{d T}{d t}=k T(T-32)$
***21. If the corpse in Question 20 cools to $27^{\circ} \mathrm{C}$ in one hour, then its temperature (in ${ }^{\circ} \mathrm{C}$) is given by the equation
(A) $T=22 e^{0.205 t}$
(B) $T=10 e^{1.163 t}$
(C) $T=10+22 e^{-0.258 t}$
(D) $T=32 e^{-0.169 t}$
(E) $T=32-10 e^{-0.093 t}$
17. The general solution to $y^{\prime}=\frac{2 x}{y}$ is $y=\sqrt{2 x^{2}+C}$. Find a solution to the initial value problem $y^{\prime}=\frac{2 x}{y}, y(0)=4$.
(A) $y=4 \sqrt{2 x^{2}+1}$
(B) $y=\sqrt{2 x^{2}+4}$
(C) $y=2 \sqrt{2 x^{2}+4}$
(D) $y=\sqrt{2 x^{2}+16}$
18. A differential equation is separable if it can be written in the form (may have more than one answer):
A) $\frac{d y}{d x}=f(x)+g(y)$
(B) $\frac{d y}{d x}=f(g(x, y))$
(C) $\frac{d y}{d x}=\frac{f(x)}{g(y)}$
(D) $\frac{d y}{d x}=f(x) g(y)$
***24. If $\frac{d x}{d t}=\sqrt{1+\sin \left(t^{2}\right)}$ and, $x(0)=3$ what is $x(2)$?
(A) 0.349
(B) 0.588
(C) 2.333
(D) 2.413
(E) 5.333
19. If a function $y=f(x)$ satisfies the differential equation $\frac{d y}{d x}=-4 y$ and $f(0)=6$, then $f(x)=$
(A) $-2 x^{2}+6$
(B) $-\frac{x}{4}+6$
(C) $6 e^{-4 x}$
(D) $e^{-4 x}+5$
(E) $-\frac{1}{4} \ln \left(x+e^{-24}\right)$
20. The solution to the differential equation $\frac{d y}{d x}=\frac{x}{\cos y}$ with the initial condition $y(1)=0$ is
(A) $y=\sin ^{-1}\left(\frac{x^{2}-1}{2}\right)$
(B) $y=\sin ^{-1}\left(\frac{x^{2}}{2}\right)$
(C) $y=\cos ^{-1}\left(x^{2}-2\right)$
(D) $y=\ln [\cos (x-1)]+\pi$
(E) $y=\ln [\sin x]+\pi$
***27. The rate at which a bacteria population grows is proportional to the number of bacteria present. At time $t=2$ hours, 500 bacteria were present, and at time $t=6,1500$ bacteria were present. Approximately how long does it take for the population to double?
(A) 2.5 hours
B) 5.4 hours
(C) 7.6 hours
(D) 8.4 hours
(E) 9.6 hours
***28. If $\frac{d y}{d x}=\frac{\sin x}{x}$ and $y(1)=4$, then $y(2)=$
(A) 0.455
B) 0.659
(C) 4.455
(D) 4.659
(E) 5.289

Answers:

1. $\mathrm{A} \quad$ 2. E 3. A 4. C 5. $\mathrm{B} \quad$ 6. B 7. C 8. B 9. B 10. B 11. A 12. D
2. C
3. B 15. A 16. E
4. D
5. A
6. C
7. A 21. C
8. D
9. D 24. E
10. C
11. A 27. A 28. D

Complete these FRQ on your own paper, except for graphing the slope fields.

1. Consider the differential equation $\frac{d y}{d x}=\frac{y^{2}}{x-1}$.
(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.
(b) Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(2)=3$. Write an equation for the tangent line to the graph of $y=f(x)$ at $x=2$.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(2)=3$.

2. Consider the differential equation $\frac{d y}{d x}=2 x-y$.
(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.
(b) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Determine the concavity of all solution curves for the given differential equation in Quadrant II. Give a reason for your answer.
(d) Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(2)=3$.
Does $y=f(x)$ have a relative minimum, relative maximum or neither at $x=2$. Justify your answer.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(2)=3$.

(e) Find the values of m and b such that $y=m x+b$ is a solution to the differential equation.
