AB Calculus Chapter 7.1 Review - Integration by U-Substitution

1. The POWER Rule: $\int x^{n} d x=$ \qquad and thinking BACKWARDS:

A $\int x d x=$	B $\int 5 x d x=$	$\mathrm{C} \int x^{5} d x=$	$\mathrm{D} \int \sqrt{x} d x=$	$\mathrm{E} \int \frac{5}{\sqrt[3]{x^{2}}} d x=$
F $\int \frac{1}{x^{4}} d x=$	$\mathrm{G} \int 3 x^{-2} d x=$	$\mathrm{H} \int 3 x^{0.7} d x=$	$\mathrm{I} \int \sqrt[3]{x} d x=$	$\mathrm{J} \int x^{e} d x=$

and thinking BACKWARDS:

$\mathrm{K} \int \sin (x) d x=$	$\mathrm{L} \int \sec ^{2}(x) d x=$	$\mathrm{M} \int d x=$	$\mathrm{N} \int \csc ^{2}(x) d x=$	$\mathrm{O} \int \cos (x) d x=$
$\mathrm{P} \int \sec (x) \tan (x) d x=$	$\mathrm{Q} \int a^{x} d x=$	$\mathrm{R} \int e^{x} d x=$	$\mathrm{S} \int 5^{x} d x=$	$\mathrm{T} \int \csc (x) \cot (x) d x=$

2. Substitution Rule:

A $\int \sin (3 x) d x=$	B $\int(2 x-1) e^{\left(x^{2}-x\right)} d x=$	C $\int \sec ^{2}(7 x) d x=$	D $\int \frac{\cos (\sqrt{x})}{\sqrt{x}} d x=$
$\mathrm{E} \int \sin ^{3}(x) \cos (x) d x=$	$\mathrm{F} \int \tan (3 x) d x=$ Hint: rewrite as ratio	$\mathrm{G} \int \frac{\ln (x)}{x} d x=$	$\mathrm{H} \int \frac{3 x-9}{x^{2}-6 x+7} d x=$
$\int \frac{1}{1+(2 x)^{2}} d x$	$\mathrm{K} \int \frac{1}{\sqrt{1-9 x^{2}}} d x$	$\mathrm{L} \int x \sin ^{3}\left(x^{2}\right) \cos \left(x^{2}\right) d x$	$\mathrm{M} \int \frac{(x-3)}{\sqrt{x^{2}-6 x+7}} d x=$

3. Definite Integrals with Substitution: $\int_{a}^{b} f(x) d x=\ldots \int_{u_{a}}^{u_{b}} f(u) d u=F\left(u_{b}\right)-F\left(u_{a}\right) \ldots=F(b)-F(a)$

$\mathrm{A} \int_{0}^{5} x \sqrt{x^{2}+4} d x$	$\mathrm{~B} \int_{0}^{\pi} \sin \theta(\cos (\theta)+5)^{7} d x$	$\mathrm{C} \int_{0}^{1} \frac{x}{5 x^{2}+1} d x$
$\mathrm{D} \int_{0}^{2}\left(2 x^{3}-6 x+\frac{3}{x^{2}+1}\right) d x$	$\mathrm{E} \int_{1}^{9} \frac{2 t^{2}+t^{2} \sqrt{t}-1}{t^{2}} d t$	

4. Use ALGEBRA:
A $\int x^{2}\left(x^{2}-3\right)^{2} d x$
B $\int \frac{(x+1)^{2}}{x} d x$
C $\int \frac{3 x-5}{\sqrt{x}} d x$

MC - NON-CALCULATOR

7. What is the average value of $y=x^{2} \sqrt{x^{3}+1}$ on the interval $[0,2]$?
A. $\frac{26}{9}$
B. $\frac{52}{9}$
C. $\frac{26}{3}$
D. $\frac{52}{3}$
E. 24
8. $\int \frac{x d x}{\sqrt{3 x^{2}+5}}=$
A. $\frac{1}{9}\left(3 x^{2}+5\right)^{3 / 2}+\mathrm{C}$
B. $\frac{1}{4}\left(3 x^{2}+5\right)^{3 / 2}+\mathrm{C}$
C. $\frac{1}{12}\left(3 x^{2}+5\right)^{1 / 2}+\mathrm{C}$
D. $\frac{1}{3}\left(3 x^{2}+5\right)^{1 / 2}+\mathrm{C}$
E. $\frac{3}{2}\left(3 x^{2}+5\right)^{1 / 2}+\mathrm{C}$
9. $\int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{\sqrt{1+\sin \theta}} d \theta=$
A. $-2(\sqrt{2}-1)$
B. $-2 \sqrt{2}$
C. $2 \sqrt{2}$
D. $2(\sqrt{2}-1)$
E. $2(\sqrt{2}+1)$
10. $\int_{2}^{3} \frac{x}{x^{2}+1} d x=$
A. $\frac{1}{2} \ln \frac{3}{2}$
B. $\frac{1}{2} \ln 2$
C. $\ln 2$
D. $2 \ln 2$
E. $\frac{1}{2} \ln 5$
11. $\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{4-x^{2}}}=$ Hint: can you make this look like $\int \frac{d x}{\sqrt{1-x^{2}}}$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{1}{2} \ln 2$
E. $-\ln 2$
12. $\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos ^{2} x} d x$ is
A. 0
B. 1
C. $e-1$
D. e
E. $e+1$
$\begin{array}{lllllll}\text { MC Answers: } & \text { 7. } A & \text { 10. } D & \text { 12. } D & \text { 14. } B & \text { 19. } A & \text { 22. } C\end{array}$

AP FRQ 1991 \#1

Let f be the function that is defined for all real numbers x and that has the following properties.
i) $f^{\prime \prime}(x)=24 x-18$
ii) $f^{\prime}(1)=-6$
iii) $f(2)=0$
a) Find each x such that the line tangent to the graph of f at $(x, f(x))$ is horizontal.
b) Write an expression for $f(x)$.
c) Find the average value of f on the interval $1 \leq x \leq 3$.

AP FRQ 2004 \#1

Traffic flow is defined as the rate at which cars pass through an intersection, measured in cars per minute. The traffic flow at a particular intersection is modeled by the function F defined by

$$
F(t)=82+4 \sin \left(\frac{t}{2}\right) \text { for } 0 \leq t \leq 30
$$

where $F(t)$ is measured in cars per minute and t is measured in minutes.
(a) To the nearest whole number, how many cars pass through the intersection over the 30 -minute period?
(b) Is the traffic flow increasing or decreasing at $t=7$? Give a reason for your answer.
(c) What is the average value of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.
(d) What is the average rate of change of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.

AP FRQ 2002 \#2

Calculator Active

The rate at which people enter an amusement park on a given day is modeled by the function E defined by $E(t)=\frac{15600}{\left(t^{2}-24 t+160\right)}$. The rate at which people leave the same amusement park on the same day is modeled by L defined by the function $L(t)=\frac{9890}{\left(t^{2}-38 t+370\right)}$. Both $E(t)$ and $L(t)$ are measured in people per hour and time t is measured in hours after midnight. These functions are valid for $9 \leq t \leq 23$, the hours during which the park is open. At time $t=9$, there are no people in the park.
a. How many people have entered the park by 5:00 P.M. $(t=17)$? Round your answer to the nearest whole number.
b. The price of admission to the park is $\$ 15$ until 5:00 P.M. $(t=17)$. After 5:00 P.M. the price of admission to the park is $\$ 11$. How many dollars are collected from admissions to the park on the given day? Round your answers to the nearest whole number.
c. Let $H(t)=\int_{9}^{t} E(x)-L(x) d x$ for $9 \leq x \leq 23$. The value of $H(17)$ to the nearest whole number is 3725 . Find the value of $H^{\prime}(17)$, and explain the meaning of $H(17)$ and $H^{\prime}(17)$ in the context of the amusement park.
d. At what time, t, for $9 \leq t \leq 23$, does the model predict that the number of people in the park is a maximum?

AP FRQ 2001 \#3

3. A car is traveling on a straight road with velocity $55 \mathrm{ft} / \mathrm{sec}$ at time $t=0$. For $0 \leq t \leq 18$ seconds, the car's acceleration $a(t)$, in $\mathrm{ft} / \mathrm{sec}^{2}$, is the piecewise linear function defined by the graph above.
(a) Is the velocity of the car increasing at $t=2$ seconds? Why or why not?
(b) At what time in the interval $0 \leq t \leq 18$, other than $t=0$, is the velocity of the car $55 \mathrm{ft} / \mathrm{sec}$? Why?
(c) On the time interval $0 \leq t \leq 18$, what is the car's absolute maximum velocity, in $\mathrm{ft} / \mathrm{sec}$, and at what time does it occur? Justify your answer.
(d) At what times in the interval $0 \leq t \leq 18$, if any, is the car's velocity equal to zero? Justify your answer.

