Ch 6 Building Area Functions - part I \& part II

- Graph $f(t)$ on the coordinate grid \& identify $f(a)$ at the lower limit $x=a$.
- Shade the region indicated by the integral and use geometry to find a formula for the area bounded by the function, the x-axis and the limits of integration.
- Simplify the function to a standard form polynomial: $y=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-2} x^{2}+a_{n-1} x^{1}+a_{n}$
- Use a colored pencil to shade the area corresponding to $\mathrm{x}=0$.
- Complete the table of values for the area function, $A(x)$. Does the table model the geometric area shown on the graph?

Looking for Patterns \& Making Conjectures:

- How is the y-intercept of the $A(x)$ equation and the table related to an area on the graph?
- What is the relationship between the Area function, $A(x)$ and the original function, $f(t)$?
- How are the area functions in (a), (b) \& (c) of this set related to each other?

Complete the next three sets of the graphs and tables. After completing each set return to answer these "Making Conjectures:" questions.

$f(t)=t$ on $[0, x]$									$f(t)=t$ on $[2, x]$								$f(t)=t$ on $[-3, x]$							
2a)$A(x)=\int_{0}^{x} t d t$									2b)$A(x)=\int_{2}^{x} t d t$								2c) $\quad A(x)=\int_{-3}^{x} t d t$							
$+$			$\stackrel{8}{ }$													-				$\stackrel{8}{8}$				-
-																								
			-																	,				
-			O													-				-				
																-								
																-								
			,													-				,				
			2									2				-				2				
-																-								
- 5								5	- 5							5	-5							5
								-				,				-				,				
-			0^{-2}					-				-2				\bigcirc								
			-4					-				-4								-4				
$A(x)=$									$A(x)=$								$A(x)=$							
Table									Table								Table							
x	-3	-2	-1	0		1	2	3	X	-3	-2	2 -1	0	1	2	3	$\begin{array}{\|c\|} \hline x \\ \hline A(x) \\ \hline \end{array}$	-3	-2	-1	0	1	2	3
$A(x)$									$A(x)$															
Anti-Derivative																								

$f(t)=2 t+3$ on $[0, x]$									$f(t)=2 t+3$ on $[1, x]$								$f(t)=2 t+3$ on $[-1, x]$							
3a)$A(x)=\int_{0}^{x} 2 t+3 d t$									3b)$A(x)=\int_{1}^{x} 2 t+3 d t$								3c)	$A($	$x)=$	$=\int_{-1}^{x} 2 t$	$t+3$			
				10				-	-			10				-				10				
	-																							
	-																							
	-			8				-				8				-	-			8				
	-															-	-							
	-															,	-							
	-			6				-				σ				\bigcirc	-			6				
	-															-	-							
	-																-							
	\bigcirc			4				-				4				-				4				
	-							-									-							
	-							-	-							\bigcirc	-							
	-			2				-				2				-	-			2				
	-								-							-	-							
	$\underline{\sim}$															-	-							
	-5							5	-5							\$	-5							\$
								T								-	-							
	-			-2				1				-2				-	-			-2				
	-								-								-							
	-							-									-							
	-			-4				-				-4				-	\bigcirc			-4				
	-							-									-							
	-							-				6					-							
																\bigcirc	7			-6				-
	-							-	\square							-	\bigcirc							\ldots
	-							,								1								1
$A(x)=$									$A(x)=$								$A(x)=$							
	x	-3	-2	-1	0	1	2	3	x	-3	-2	-1	0	1	2	3	x	-3	-2	-1	0	1	2	3
A(x)									A(x)								A(x)							
Anti-Derivative																								

Ch 6 Building Area Functions - part III

We have now seen how to build area functions by:

- Graphing and using geometry to write an area function
- Using a table to record geometric area on the graph and making sure the area function models the data in the table.
- Find the ANTI-DERIVATIVE of $f(t)$, call this $F(x)$ and then evaluate from $x=a$ to $x=b$ according to the following:

$$
A(x)=\int_{a}^{b} f(t)=\left.F(t)\right|_{a} ^{b}=F(b)-F(a)
$$

Graph the three functions, $f(t)$, on the grids provided.

Use the graphs above to determine an area function for each integral below. Note the changes in the lower limits of each integral.

| | $A(x)=\int_{0}^{x}(4) d t$ | $A(x)=\int_{0}^{x}(2 t) d t$ | | $A(x)=\int_{0}^{x}(4-2 t) d t$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Build area function from graph | | | | |

$A(x)=\int_{-2}^{x}(4) d t$						$A(x)=\int_{-2}^{x}(2 t) d t$						$A(x)=\int_{-2}^{x}(4-2 t) d t$					
Build area function from graph																	
Table						Table						Table					
x	-4	-2	0	1	3	x	-4	-2	0	1	3	x	-4	-2	0	1	3
A(x)						A(x)						A(x)					
Find Anti-Derivative																	

$A(x)=\int_{3}^{x}(4) d t$						$A(x)=\int_{3}^{x}(2 t) d t$						$A(x)=\int_{3}^{x}(4-2 t) d t$					
Build area function from graph																	
Table												Table					
x	-2	0	3	5	8	x	-2	0	3	5	8	x	-2	0	3	5	8
A(x)						A(x)						A(x)					
Find Anti-Derivative																	

