Unit 4 Part 1 Review Sheet Ch 4 Test (part 1) 6 December 2017

Derivative of an Inverse Function:

1. Give	n the function j	$f(x) = x^3 - 2$	$2x+1$ where ξ	$g(x) = f^{-1}(x)$	x),	complete the following table & $f'(x) =$
	Evaluate	f(0) =	f(2) =	f(-3) =]	** Use the same $f(x)$ to evaluate $g'(116) =$
	Solve	$g(__)=0$	$g(__)=2$	$g(__) = -1$		
	Evaluate	f'(0) =	f'(2) =	f'(-1) =		
	Evaluate	g'(1) =	g'(5) =	g'(-20) =	1	
						You will need to use your calculator! Do you know
						use it effectively & efficiently for this type of questi

You will need to use your calculator! Do you know how to use it effectively & efficiently for this type of question?

(E)

2

0

4/3

-3

5

f(x)

''(x)

3 4

2 3

-8

1/2

2. Use the table to find the Derivative of the Inverse Function at each value:

A)
$$(f^{-1})'(2) = B)(f^{-1})'(3) = C)(f^{-1})'(0) = D)(f^{-1})'(-3) =$$

Implicit Differentiation:

3. If $x^2 + xy + y^3 = 0$, then, in terms of x and y, $\frac{dy}{dx} =$

(A)
$$-\frac{2x+y}{x+3y^2}$$
 (B) $-\frac{x+3y^2}{2x+y}$ (C) $\frac{-2x}{1+3y^2}$ (D) $\frac{-2x}{x+3y^2}$ (E) $-\frac{2x+y}{x+3y^2-1}$

4. If $x^2 + xy = 10$, then when x = 2, $\frac{dy}{dx} =$ (A) $-\frac{7}{2}$ (B) -2 (C) $\frac{2}{7}$ (D) $\frac{3}{2}$

5. If $x^2 + y^2 = 25$, what is the value of $\frac{d^2 y}{dx^2}$ at the point (4, 3)? (A) $-\frac{25}{27}$ (B) $-\frac{7}{27}$ (C) $\frac{7}{27}$ $\frac{25}{27}$ (D) $\frac{3}{4}$ (E)

6. Write the equation of the tangent line to the curve $y^3 - xy^2 = 4$ at the point where y = 2 is

Find $\frac{dy}{dx}$ if $\ln(xy) = x + y$ 7.

Linear Approximations of a function using Tangent Lines

$$8. \qquad f(x) = \frac{1}{\sqrt{1-x}}$$

i) Write the tangent line equation: t(x) at c = -3ii) Approximate f(-3.1) using $t(-3.1) \approx$

iii) Is t(-3.1) an over/under estimate? Why?

iv) ****** Find the difference
$$f(-3.1) - t(-3.1)$$

9.
$$f(x) = \ln(1-x)$$

i) Write the tangent line equation:
$$t(x)$$
 at $c=1-e$
ii) Approximate $f(1.1-e)$ using $t(1.1-e) \approx$
iii) Is $t(1.1-e)$ an over/under estimate? Why?
iv) ****** Find the difference $f(1.1-e)-t(1.1-e)$

Mean Value Theorem

10. Given $f(x) = \frac{1}{4}x^3 + 1$ over the interval [0, 2], verify the hypotheses of the Mean Value Theorem are satisfied on the given interval and find all values c in that interval that satisfy the conclusion of the theorem.

11. You are driving on a straight highway on which the speed limit is 55mph. At 8:05 AM a police car clocks your velocity at 50 mph and at 8:10 AM a second police car posted 5 miles down the road clocks your velocity at 55 mph. Explain why the police have a right to charge you with a speeding violation. (Anton p306)

1st & 2nd Derivative Tests to identify function behavior

12. Given the graph of the <u>derivative of f(x)</u>,

13. If the derivative of a function f(x) is $f'(x) = 3(x+2)(x+1)^2(x-3)^3$, find the x-value(s) where a relative maximum occurs. Show the work leading to your answer.

14. Let $f''(x) = -3x^2 + 6x + 1$ and let f have a critical number at x = 1. Use the <u>Second Derivative Test</u> to determine if there is a relative max or relative min at the critical value.

Optimization

15. Given $f(x) = 2x^3 - 3x^2 - 12x$, classify all relative and absolute extrema on the interval [-2, 4]. Use a signed-pattern number line to organize your thoughts. Create a table and make your conclusion.

16. Given $f(x) = \left(\frac{x-4}{x+3}\right)^2$ Complete the information in the charts on your own paper. Graph without your calculator.

a. $f'(x) = ?$	d. $f''(x) = ?$
b. Critical points	e. Critical points
c. Signed #line	f. Signed #line

State the intervals for which	j. Identify inflection point(s)		
& include a reason why.			
g. f is increasing & decreasing	k. vertical asymptote? y-intercept?		
h. f is concave up & concave down	1. $\lim_{x \to \pm \infty} f(x) = ?$		
i. Make table and classify relative & absolute extrema (max/min)	m. Graph $f(x)$		

17. Given $f(x) = x^2 e^{-x}$ on the interval [-1, 4]. Complete the information on your own paper. Graph without a calculator.

$f'(x) = e^{-x}(2x - x^2)$ $f''(x) = e^{-x}(x^2 - 4x + 2)$ & justify conclusionrel & abs max or minb. Critical pointse. Critical pointsg. f is increasing/decreasingj. Identify inflection po	l classify
b. Critical points e. Critical points g. f is increasing/decreasing j. Identify inflection po	**
	nts <mark>**</mark>
c. Signed #line f. Signed #line h. f is concave up/down k. Graph $f(x)$	

18. Given $f(x) = 2 - x^{\frac{2}{3}}$, complete all information in the charts on your own paper. Graph without a calculator.

a. $f'(x) = ?$	d. $f''(x) = ?$
b. Critical points	e. Critical points
c. Signed #line	f. Signed #line

State the intervals for which			
& include a reason why.			
g. f is increasing & decreasing			
h. f is concave up & concave down			

i. Make an x-y table and classify			
relative/absolute extrema (max or min)			
j. Identify inflection points			
k. find zeros ** & Graph $f(x)$			

Challenge If $y = x^{1-x}$ we can find the derivative by first taking the natural log of the equation: $\ln(y) = \ln(x^{1-x})$ Use log rules and implicit differentiation to find

 $\frac{dy}{dx}$. Choose all answers that are true: (A) $-\ln(x) + \frac{(1-x)}{x}$ (B) $\left[\frac{1-x}{x} - \ln(x)\right] x^{1-x}$ (C) $(1-x)x^{-x} - x^{1-x}\ln(x)$ (D) $x^{-x} - x^{1-x}(1+\ln x)$

Show work.