Unit 4 Part 1 Review Sheet
Ch 4 Test (part 1) 6 December 2017

## Show all work on a separate sheet of paper

** = Calculator required. Otherwise do not use a calculator

Derivative of an Inverse Function:

1. Given the function $f(x)=x^{3}-2 x+1$ where $g(x)=f^{-1}(x)$, complete the following table \& $f^{\prime}(x)=$ $\qquad$

| Evaluate | $f(0)=$ | $f(2)=$ | $f(-3)=$ |
| :--- | :--- | :--- | :--- |
| Solve | $g(\ldots)=0$ | $g(\ldots)=2$ | $g(\ldots)=-1$ |
| Evaluate | $f^{\prime}(0)=$ | $f^{\prime}(2)=$ | $f^{\prime}(-1)=$ |
| Evaluate | $g^{\prime}(1)=$ | $g^{\prime}(5)=$ | $g^{\prime}(-20)=$ |
|  |  |  |  |

** Use the same $f(x)$ to evaluate $g^{\prime}(116)=$

You will need to use your calculator! Do you know how to use it effectively \& efficiently for this type of question?
2. Use the table to find the Derivative of the Inverse Function at each value:
A) $\left(f^{-1}\right)^{\prime}(2)=$
B) $\left(f^{-1}\right)^{\prime}(3)=$
C) $\left(f^{-1}\right)^{\prime}(0)=$
D) $\left(f^{-1}\right)^{\prime}(-3)=$

| $x$ | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | -3 | 0 | 2 | 3 |
| $f^{\prime}(x)$ | 5 | $4 / 3$ | -8 | $1 / 2$ |

## Implicit Differentiation:

3. If $x^{2}+x y+y^{3}=0$, then, in terms of $x$ and $y, \frac{d y}{d x}=$
(A) $-\frac{2 x+y}{x+3 y^{2}}$
(B) $-\frac{x+3 y^{2}}{2 x+y}$
(C) $\frac{-2 x}{1+3 y^{2}}$
(D) $\frac{-2 x}{x+3 y^{2}}$
(E) $\quad-\frac{2 x+y}{x+3 y^{2}-1}$
4. If $x^{2}+x y=10$, then when $x=2, \frac{d y}{d x}=$
(A) $-\frac{7}{2}$
(B) -2
(C) $\frac{2}{7}$
(D) $\frac{3}{2}$
(E) $\frac{7}{2}$
5. If $x^{2}+y^{2}=25$, what is the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(4,3) ?$
(A) $-\frac{25}{27}$
(B) $-\frac{7}{27}$
(C) $\frac{7}{27}$
(D) $\frac{3}{4}$
(E) $\frac{25}{27}$
6. Write the equation of the tangent line to the curve $y^{3}-x y^{2}=4$ at the point where $y=2$ is
7. Find $\frac{d y}{d x}$ if $\ln (x y)=x+y$

## Linear Approximations of a function using Tangent Lines

8. $f(x)=\frac{1}{\sqrt{1-x}}$
i) Write the tangent line equation: $t(x)$ at $c=-3$
ii) Approximate $f(-3.1)$ using $t(-3.1) \approx$
iii) Is $t(-3.1)$ an over/under estimate? Why?
9. $f(x)=\ln (1-x)$
i) Write the tangent line equation: $t(x)$ at $c=1-e$
ii) Approximate $f(1.1-e)$ using $t(1.1-e) \approx$
iii) Is $t(1.1-e)$ an over/under estimate? Why?
iv) $* *$ Find the difference $f(1.1-e)-t(1.1-e)$

## Mean Value Theorem

10. Given $f(x)=\frac{1}{4} x^{3}+1$ over the interval $[0,2]$, verify the hypotheses of the Mean Value Theorem are satisfied on the given interval and find all values c in that interval that satisfy the conclusion of the theorem.
11. You are driving on a straight highway on which the speed limit is 55 mph . At $8: 05$ AM a police car clocks your velocity at 50 mph and at 8:10 AM a second police car posted 5 miles down the road clocks your velocity at 55 mph . Explain why the police have a right to charge you with a speeding violation.
(Anton p306)

## 1st \& 2nd Derivative Tests to identify function behavior

12. Given the graph of the derivative of $f(x)$,

a) State the critical values on $f(x)$.
b) State x-intervals for which $f(x)$ increasing and decreasing. Justify your conclusion.
c) Classify each critical value as a maximum, minimum or neither. Justify your conclusion.
d) State x -intervals for which $f(x)$ is concave up and concave down. Justify your conclusion.
13. If the derivative of a function $f(x)$ is $f^{\prime}(x)=3(x+2)(x+1)^{2}(x-3)^{3}$, find the x -value(s) where a relative maximum occurs. Show the work leading to your answer.
14. Let $f^{\prime \prime}(x)=-3 x^{2}+6 x+1$ and let $f$ have a critical number at $x=1$. Use the Second Derivative Test to determine if there is a relative max or relative min at the critical value.

## Optimization

15. Given $f(x)=2 x^{3}-3 x^{2}-12 x$, classify all relative and absolute extrema on the interval $[-2,4]$. Use a signed-pattern number line to organize your thoughts. Create a table and make your conclusion.
16. Given $f(x)=\left(\frac{x-4}{x+3}\right)^{2}$ Complete the information in the charts on your own paper. Graph without your calculator.

| a. $f^{\prime}(x)=?$ | d. $f^{\prime \prime}(x)=?$ |
| :--- | :--- |
| b. Critical points | e. Critical points |
| c. Signed \#line | f. Signed \#line |$\quad$| State the intervals for which... <br> $\&$ include a reason why. | j. Identify inflection point(s) |
| :--- | :--- | :--- |
| g. $f$ is increasing \& decreasing... | k. vertical asymptote? y-intercept? |
| h. $f$ is concave up \& concave down... | l. $\operatorname{limm}_{x \rightarrow \pm \infty} f(x)=?$ |
|  <br> absolute extrema (max/min) | m. Graph $f(x)$ |

17. Given $f(x)=x^{2} e^{-x}$ on the interval $[-1,4]$. Complete the information on your own paper. Graph without a calculator.

| a. Show that <br> $f^{\prime}(x)=e^{-x}\left(2 x-x^{2}\right)$ | d. Show that <br> $f^{\prime \prime}(x)=e^{-x}\left(x^{2}-4 x+2\right)$ |
| :--- | :--- |
| b. Critical points | e. Critical points |
| c. Signed \#line | f. Signed \#line |


| State the intervals for which... <br> $\& ~ j u s t i f y ~ c o n c l u s i o n ~$ |
| :--- |
| g. $f$ is increasing/decreasing |
| h. $f$ is concave up/down |


| i. | Make an x-y table and classify <br> rel \& abs max or min. |
| :--- | :--- |
| j. | Identify inflection points ** |
| k. | Graph $f(x)$ |

18. Given $f(x)=2-x^{\frac{2}{3}}$, complete all information in the charts on your own paper. Graph without a calculator.

| a. $f^{\prime}(x)=?$ | d. $f^{\prime \prime}(x)=?$ |
| :--- | :--- |
| b. Critical points | e. Critical points |
| c. Signed \#line | f. Signed \#line |


| State the intervals for which... <br> \& include a reason why. |
| :--- |
| g. $f$ is increasing \& decreasing |
| h. $f$ is concave up \& concave down |


| i. $\quad$ Make an x-y table and classify $\ldots$ <br> relative/absolute extrema (max or min) |
| :--- | :--- |
| j. Identify inflection points |
| k. find zeros $* * \&$ Graph $f(x)$ |

Challenge If $y=x^{1-x}$ we can find the derivative by first taking the natural $\log$ of the equation: $\ln (y)=\ln \left(x^{1-x}\right)$ Use $\log$ rules and implicit differentiation to find
$\frac{d y}{d x}$. Choose all answers that are true:
(A) $-\ln (x)+\frac{(1-x)}{x}$
(B) $\left[\frac{1-x}{x}-\ln (x)\right] x^{1-x}$
(C) $(1-x) x^{-x}-x^{1-x} \ln (x)$
(D) $x^{-x}-x^{1-x}(1+\ln x)$

## Show work.

