§3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

Find these derivatives of these functions:
$y=\tan (x)$
$y=\sin (x)$
$y=e^{x}$
$\frac{d}{d x}(\tan (x))=$
$\frac{d}{d x}(\sin (x))=$
$\frac{d}{d x}\left(e^{x}\right)=$

Write the inverses of these functions:
$y=\tan (x)$

$$
y=\sin (x)
$$

$$
y=e^{x}
$$

How would we find the derivatives of these inverse functions?

Let's look at a brief introduction to Implicit Differentiation so that we can find the derivatives of these three inverse functions.
Up to now, we have worked explicitly, solving an equation for one variable y in terms of another variable x. For example, if you were asked to find $\frac{d y}{d x}$ for $2 x^{2}+y^{2}=4$, you would solve for y and get $y= \pm \sqrt{4-2 x^{2}}$ and then take the derivative. This derivative requires the use of the chain rule.

Sometimes it is inconvenient, difficult or impossible to solve for \boldsymbol{y}. In this case, we use implicit differentiation. It is imperative to note that anytime you see a y-variable you must think of y as a function of x just as in the notation: $y=f(x)$. Since I do not know the explicit form of $f(x)$ I will apply the chain rule to indicate it's derivative.

Differentiating with respect to x :

variables agree

Practice:

1. $-3 y^{2}=x^{4}+5$
2. $\sqrt{y}+y^{2}=\cos \left(x^{3}\right)$

Find $\frac{d y}{d x}$

§3.6 Implicit Differentiation -- Student Notes

Let's return to our 3 inverse functions and use implicit differentiation to find their derivatives:
$\frac{d}{d x}(\arctan (x)) \quad \frac{d}{d x}(\arcsin (x)) \quad \frac{d}{d x}(\ln (x))$

Derivatives of some important Inverse functions (MEMORIZE THESE).

$$
\frac{d(\arctan x)}{d x}=\quad \frac{d(\arcsin x)}{d x}=\quad \frac{d(\ln x)}{d x}=
$$

$$
\text { Note: } \quad \begin{array}{lll}
\arctan x=\tan ^{-1} x & \& & \arctan (\tan x)=\tan (\arctan x)=x \\
\arcsin x=\sin ^{-1} x & \& & \arcsin (\sin x)=\sin (\arcsin x)=x
\end{array}
$$

Examples using the derivative rules we just found and applying rules we already learned:
a) $\frac{d\left(\arctan \left(t^{2}\right)\right)}{d t}$
b) $\frac{d(\arcsin (\tan (\theta)))}{d \theta}$
c) $\frac{d \ln \left(x^{2}+1\right)}{d x}$
d) $\frac{d\left(t^{2} \ln t\right)}{d t}$
e) $\frac{d(\sqrt{1+\ln (2 y)})}{d y}$
f) $\frac{d\left(\cos \left(\sin ^{-1} x\right)\right)}{d x}$

Derivative of Inverse Function Theorem

Function and Inverse Pre-requisites:
Given each function, identify key points on the function that fall on lattice points of the coordinate grid.

Mark 7 points on the parabola with visible dots.

Mark 3 points on the cubic with visible dots.
2)

a) Write the equation of each function in (h, k) form and evaluate the function at the given point.

| Quadratic function
 $f(x)=$ | Cubic function
 $f(x)=$ | $(1, f(1))=$ |
| :--- | :--- | :--- | :--- |

b) For each function, list the operations on x that yield y. Parabola

Cubic

c) Write inverse equations by using the list in (b) \& applying inverse operations in reverse order on x.

State the corresponding inverse coordinate from the point on the function in part (a)

$f^{-1}(x)=$	$\left(x, f^{-1}(x)\right)=$	$f^{-1}(x)=$	$\left(x, f^{-1}(x)\right)=$

d) Accurately, sketch the inverse function on the coordinate grid using the key lattice points. Label $f^{-1}(x)$.
e) Find the derivative of the function at the specified point.

Find the derivative of its inverse at the corresponding point on the inverse.

$f^{\prime}(x)=$	$\left.\frac{d y}{d x}\right\|_{x=3}=$	$f^{\prime}(x)=$	$\left.\frac{d y}{d x}\right\|_{x=1}=$
$\left(f^{-1}\right)^{\prime}(x)=$	$\left(f^{-1}\right)^{\prime}\left(__\right)=$	$\left(f^{-1}\right)^{\prime}(x)=$	$\left(f^{-1}\right)^{\prime}\left(_\right)=$

f) What is the relationship between the derivative value of the function at the point and its inverse at the corresponding inverse point? \qquad

AB Calculus Supplement: Derivative of the Inverse of a Function

Suppose that f and $g=f^{-1}$ are inverse functions. What is the relationship between their derivatives?

- Algebraically: inverses are obtained by interchanging the x and y coordinates and solving for y.
- Graphically: inverses are reflections of each other in the line $y=x$.

If f passes through the point (a, b), then the slope of the curve at $x=a$ is represented by $f^{\prime}(a)$ and by the ratio of the change in y over the change in $x, \frac{\Delta y}{\Delta x}$. In the figure, note the slope triangle at point $P(a, b)$ on f with vertical length $d y$ and horizontal length $d x$ and slope $\frac{d y}{d x}$.

When the graph of f is reflected in the line $y=x$, we obtain the graph of the inverse of f denoted as f^{-1} and this inverse graph passes through the point (b, a). The slope of the inverse curve at $x=b$ is represented by $\left(f^{-1}\right)^{\prime}(b)$ and by the ratio of the change in x over the change in $y, \frac{\Delta x}{\Delta y}=\frac{d x}{d y}$ because the
 horizontal and vertical lengths of the slope triangle at Point P were interchanged at P '.

The slope of the line tangent to the graph of $g=f^{-1}$ at $x=b$ is the reciprocal of the slope of f at $x=a$.
$\underline{\text { http://demo.activemath.org/ActiveMath2/LeAM_calculatorPics/DerivInverseFunction.png?lang=en }}$

Derivative of the Inverse of a Function

Given (a, b) is a point on f and $g=f^{-1}$ is the inverse of f,

$$
\text { if } f^{\prime}(a)=m \text {, then } g^{\prime}(b)=\left(f^{-1}\right)^{\prime}(b)=\frac{1}{m} \text {. }
$$

The derivative of the inverse of a function at a point is the reciprocal of the derivative of the function at the corresponding point.

Examples:

1) If $f(7)=1$ and $f^{\prime}(7)=5$ and g is the inverse of f, that is $g=f^{-1}$, then $g^{\prime}(1)=$?
2) If $f(-2)=5, f^{\prime}(-2)=6$ and $f^{\prime}(5)=-3$ and g is the inverse of f, that is $g=f^{-1}$, then $g^{\prime}(5)=$?
3) Values for a function f and its derivative are shown in the table.

If g is the inverse of f then evaluate $g^{\prime}(4)$ and $g^{\prime}(-1)$.

x	$f(x)$	$f^{\prime}(x)$
-3	4	0.25
2	-1	$\frac{-2}{3}$

4) Let $f(x)=\sqrt{x}$, and let g be the inverse of f. Evaluate $g^{\prime}(3)$.
5) Let $f(2)=-3, f^{\prime}(2)=\frac{3}{4} \& g$ be the inverse of f, what is the equation of the tangent line to $g(x)$ at $x=-3$?
6) The following figure shows $f(x)$ and $f^{-1}(x)$. Using the given table, find:
a) $f(2), f^{-1}(2), f^{\prime}(2),\left(f^{-1}\right)^{\prime}(2)$.
b) The equation of the tangent line at the points $P(3,8)$ and $Q(8,3)$.

x	$f(x)$	$f^{\prime}(x)$
0	1	0.7
1	2	1.4
2	4	2.8
3	8	5.5

c) What is the relationship between the two tangent lines?
7) Calculate $g^{\prime}(1)$ where $g(x)$ is the inverse of $f(x)=x+e^{x}$ without solving for $g(x)$.
8) Calculate $g^{\prime}(x)$ where $g(x)$ is the inverse of $f(x)=x^{3}+1$ without solving for $g(x)$.
9) Let $f(x)=\frac{1}{4} x^{3}+x-1$. Assume $f(x)$ is one-to-one, meaning that $f(x)$ has an inverse that is also a function.
a) What is the value of $f^{-1}(x)$ when $x=3$?
b) Find the slope of the tangent line to the curve $y=f^{-1}(x)$ at $x=3$.

Keys to Properly Solving Derivative of Inverse Problems:

- Identify the point (a, b) on the function f using the information that is given.
- Differentiate f
- Take the reciprocal of the derivative of f. This is the derivative of f^{-1}.
- Evaluate the derivative of f^{-1} at the point (b, a)

Practice:

Given the table of values for differentiable functions f and g.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
$\mathbf{1}$	$\mathbf{2}$	$1 / 2$	$\mathbf{- 3}$	$\mathbf{5}$
$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{4}$
$\mathbf{3}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{4}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{3}$	$-1 / 2$

a) If $h(x)=f^{-1}(x)$, then evaluate $h^{\prime}(4)$.
b) If $h(x)=f^{-1}(x)$, then evaluate $h^{\prime}(2)$.
c) If $d(x)=g^{-1}(x)$, then evaluate $d^{\prime}(-3)$.
d) If $d(x)=g^{-1}(x)$, then evaluate $d^{\prime}(3)$.

And these are not derivatives of inverses, but they are good practice.
e) If $p(x)=g^{2}(x)$, then evaluate $p^{\prime}(3)$.
f) If $b(x)=f(x) \bullet g(x)$, then evaluate $b^{\prime}(2)$.
g) If $n(x)=f\left(x^{3}\right)$, then evaluate $p^{\prime}(1)$.
h) If $m(x)=f\left(\frac{x}{3}\right)$, then evaluate $m^{\prime}(9)$.
i) If $q(x)=g(2 x+3)$, then evaluate $q^{\prime}\left(\frac{1}{2}\right)$.

§3.7 Implicit Differentiation -- Student Notes

Up to now, we have worked explicitly, solving an equation for one variable in terms of another. For example, if you were asked to find $\frac{d y}{d x}$ for $2 x^{2}+y^{2}=4$, you would solve for y and get $y= \pm \sqrt{4-2 x^{2}}$ and then take the derivative. Sometimes it is inconvenient or difficult to solve for y. In this case, we use implicit differentiation. You assume y could be solved in terms of x and treat it as a function in terms of x. Thus, you must apply the chain rule because you are assuming y is defined in terms of x.

Differentiating with respect to x :

variables agree

variables agree
$\frac{d}{d x}\left[x y^{2}\right]=1\left(y^{2}\right)+x\left(2 y \frac{d y}{d x}\right)=y^{2}+2 x y \frac{d y}{d x}$ variables disagree use product and chain rules

Consider the problem, find $\frac{d y}{d x}$ for $y^{2}-2 y+3 x=x^{2}$. Treat y as a quantity in terms of x so

Now solve for $\frac{d y}{d x}$. $2 y \frac{d y}{d x}-2 \frac{d y}{d x}=2 x-3 \Rightarrow \frac{d y}{d x}(2 y-2)=2 x-3 \Rightarrow \frac{d y}{d x}=\frac{2 x-3}{2 y-2}$

Guidelines for Implicit Differentiation:

1. Differentiate both sides of the equation with respect to x.
2. Collect all terms involving $\frac{d y}{d x}$ on one side of the equation and move all other terms to the other side.
3. Factor $\frac{d y}{d x}$ out of the terms on the one side.
4. Solve for $\frac{d y}{d x}$ by dividing both sides of the equation by the factored term.

Practice:
Find $\frac{d y}{d x}$:

1. $y^{3}+7 \cos (y)=x^{3}$
2. $4 x^{2} y-3 y=x^{3}-1$
3. $x^{2}+5 y^{3}=x y+9$
4. $x^{3}+x^{2} y-10 y^{4}=0$
5. Find the equation of the normal line (the line perpendicular to the tangent line) to the curve $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$ at the point $(3,1)$.

6 Given $y=f^{-1}(x)$ rewrite the inverse function as $f(y)=x$ then use implicit differentiation to find the derivative of an inverse function. Write the final answer in terms of only x.

§3.9 Linear Approximation and the Derivative - Student Notes

Tangent Line Approximations:
We can use the equation of the tangent line to approximate the value of a function at a particular value of x .
The concavity of the function tells us if an approximation made with the tangent line if an over-estimate (too high) or an under-estimate (too low.)

If a function is concave up, the tangent line will be \qquad the curve and any approximation made from the tangent line equation will be \qquad .

If a function is concave down, the tangent line will be \qquad the curve and any approximation made from the tangent line equation will be \qquad .

Sketch four portions of graphs satisfying the criteria given, then draw a point on each of the portions and draw a tangent line to the curve at that point. Do your pictures illustrate the conclusions you made above?

$f^{\prime}>0 \& f^{\prime \prime}>0$	$f^{\prime}>0 \& f^{\prime \prime}<0$	$f^{\prime}<0 \& f^{\prime \prime}>0$	$f^{\prime}<0 \& f^{\prime \prime}<0$

For each question below, write the equation of the tangent line to the curve at the designated value of x . Use the tangent line equation to approximate the value of the function at the given x-value. Finally use the $2^{\text {nd }}$ Derivative and concavity to justify whether the tangent line approximation is too high or too low.

|
 $x=a$ | Tangent line
 equation at
 $x=a$ | Tangent line
 approximation at
 $x=a$ | |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)=\sqrt{x}$
 $x=49$ | | Second Derivative
 evaluated at
 $x=a$ | |
| $f(x)=\frac{1}{x}$
 $x=1$ | | $f(50) \approx$ | Is the tangent line
 approximation an
 overestimate or
 underestimate?
 Justify using $\mathrm{f} "$ |

$\begin{array}{\|ll} 3 & f(x)=\ln (x) \\ x=e \end{array}$	$f(3) \approx$	$f "(e)=$	
	$f(1.1) \approx$	$f "(1)=$	
1	$f(1.01) \approx$	$f "(1)=$	
$\begin{array}{ll} & j(x)=\cos (x) \\ 6 & x=\frac{\pi}{6} \end{array}$	$f(0.5) \approx$	$f^{\prime \prime}\left(\frac{\pi}{6}\right)=$	

§3.10 Mean Value Theorem - Student Notes

MEAN VALUE THEOREM: If a function is continuous on [a, b] and differentiable on (a, b), then there is as number \mathbf{c} in the interval (\mathbf{a}, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \text { or } \quad(b-a) f^{\prime}(c)=f(b)-f(a) .
$$

1. Use the graph to illustrate the Mean Value Theorem with a continuous and differentiable function. Show $f(x), a, b, c$ and all other conditions of the theorem.
2. Find the number c that satisfies the Mean Value Theorem (MVT) for
 $f(x)=\sqrt{x}$ on the interval $[0,4]$. Draw a picture.
3. Why does the MVT not apply?
a) $\mathrm{y}=\frac{x+3}{x-2}$ on $[0,3]$
b) $\mathrm{f}(\mathrm{x})=x^{\frac{1}{3}}$ on $[-1,1]$
4. Apply the MVT, if possible. If not possible explain why.

A $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ on $[-2,1]$	B $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}$ on $[0,3]$	C $\mathrm{f}(\mathrm{x})=x^{\frac{2}{3}}$ on $[0,1]$

MVT Problems

1. The function $f(x)=x^{\frac{2}{3}}$ on $[-8,8]$ does not satisfy the conditions of the Mean Value Theorem because
A. $f(0)$ is not defined
B. $f(x)$ is not continuous of $[-8,8]$
C. $f^{\prime}(-1)$ does not exist
D. $f(x)$ is not defined for $\mathrm{x}<0$.
E. $f^{\prime}(0)$ does not exist
2. If $f(a)=f(b)$ and $f(x)$ is continuous on $[\mathrm{a}, \mathrm{b}]$, then
A. $f(x)$ must be identically zero
B. $f^{\prime}(x)$ may be different from zero for all x on $[\mathrm{a}, \mathrm{b}]$
C. there exists at least one number $\mathrm{c}, \mathrm{a}<\mathrm{c}<\mathrm{b}$, such that $f^{\prime}(c)=0$
D. $f^{\prime}(x)$ must exist for every x on (a, b)
E. none of the preceding is true
3. Find the value of c that satisfies the Mean Value Theorem for $f(x)=x^{3}+x-4$ on the interval $[-2,1]$.
A. -1
B. 1
C. 0
D. 4
E. None of these.
4. Find the number that satisfies the MVT on the given interval $\underline{\text { or }}$ state why the theorem does not apply.
a) $f(x)=x^{\frac{2}{5}}$ on $[0,32]$
b) $f(x)=\frac{1}{(x-2)^{2}}$ on [2,5]
c) $g(x)=x+\frac{1}{x}$ on $[1,3]$
d) $h(x)=x^{\frac{1}{2}}+2(x-2)^{\frac{1}{3}}$ on $[1,9]$

2003 \#92: Let f be defined by $f(x)=x+\ln (x)$. What is the value of c for which the instantaneous rate of change of f at $x=c$ is the same as the average rate of change of f over $[1,4]$?
(A) 0.456
(B) 1.244
(C) 2.164
(D) 2.342
(E) 2.452

HW MVT

Write the definition of continuity. 1)

1) 2)
1)

Write mathematical notation for differentiability:
State the two prerequisite conditions that must be determined before the Mean Value Theorem can be applied.
1)
2)

What two calculations must be determined before making a conclusion using the Mean Value Theorem.
1)
2)

Read questions \#1-4. If the function satisfies the hypotheses of the Mean Value Theorem, then solve for the value of c that satisfies the conclusion of the Mean Value Theorem. Otherwise, tell why it fails to meet the conditions of the Mean Value Theorem.

1. Given $f(x)=5-\frac{4}{x}$, find all values, c, in the interval $[1,4]$.
2. Given $f(x)=x^{4}-2 x^{2}$, find all values, c, in the interval $[-2,2]$.
3. Given $f(x)=x\left(x^{2}-x-2\right)$, find all values, c, in the interval $[-1,1]$.
4. Given $f(x)=x^{\frac{2}{3}}-1$, find all values, c, in the interval $[-8,8]$.
