Chapter 3 (part 2) – Chapter 4 (part 1): Derivative Applications

Name

Assg Topic J J A Day 54 \$35. WS Supplement: Derivatives of Inverse Function Theorem (Into with relationship between the slope of a function at a given point on the function and the slope of the inverse function at a given point on the function and the slope of the inverse function at a given point on the function and the slope of the inverse function at a given point on the function of a function, using the inverse function Theorem, I 13 Nov Mon PD 159-152: #57-59,63-68 Image: Strategiven point on the inverse; the slope of the inverse function at a given point on the inverse; the slope of the inverse function. PD 159-152: #57-59,63-68 Image: Strategiven point on the inverse; the slope of the inverse function. PD 159-152: #57-59,63-68 Image: Strategiven point on the inverse; the slope of the inverse function. PD 159-152: #57-59,63-68 Image: Strategiven point on the inverse; the slope of the inverse function. PD 159-152: #57-59,63-68 Image: Strategiven point on the inverse; the slope of the inverse function. PD 159-152: #57-59,63-68 Image: Strategiven point on the inverse; the slope of the inverse function. PD 159-152: #57-59,63-68 Image: Strategiven point on the inverse; the slope of the inverse function. PD 159-152: #57-59,63-68 Image: Strategiven point Strategiven point PD 159-152: #57-59,63-68 Image: Strategiven point Strategiven point Image: Strategiven point Strategiven point Image: Strategiven point Strategiven point Image: Strategiven point Strategiven point Image: Strategiven poi	Chapter 5	(part 2) – Chapter 4 (part 1): Derivative Applications Nam						
Asin Topic HW Qty Days 14 35.40 % Supplement: Derivatives of inverse function Theorem pp 159-152: #57-59,63-68 Fill Finds y	Assignment Sneet period 2 3 4							
Day 54 \$3.6 W5 supplement: Derivatives of Inverse Function Theorem in Know the relationship between the slope of a function at a given point on the function and the slope of the inverse function Theorem in How the relation of a function, using the Inverse function Theorem, in How the relation of a function, using the Inverse function Theorem, in How the relation of a function, using the Inverse function Theorem, in How the relation of a function, using the Inverse function. WS pp 5-8 (hand numbered pages) finish completely 13 Nov transmittion in the derivative of its inverse without knowing the inverse function. WS pp 5-8 (hand numbered pages) finish completely 13 Nov transmittion sing Tangent Lines WV in NOTES pp 3-4 H1-2 Win NOTES pp 3-4 H1-2 16 Nov transpent line to approximate the value of a function and determine if the approximation using Tangent Lines HW in NOTES pp 3-4 H1-2 17 Nov S 3.10 Mean Approximation using Tangent Lines HW in NOTES pp 3-4 H1-2 16 Nov tran appti the First and Second Derivatives problems. I can appti the HTV, tatting percepuistes, calculating values and drawing conclusions pr 192-196: #1-4, 9, 13, 31, 38, 43 27 Nov 1 and set th ¹⁸ and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 th and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 th and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 th and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 th and 2 rd derivatives to discuss the denivatif, relative extrema - I know my vocabulary. c	Assn	Торіс		HW		Qty		
Friday	Day 54	§3.6 WS Supplement: Derivatives of Inverse Function Theorem		pp 159-16	2: #57-59,63-68			
10 Nov the function and the slope of the inverse function at the corresponding point	Friday	I know the relationship between the slope of a function at a g	า					
on the inverse, the slopes are reciprocals. Page 55 Non	10 Nov	the function and the slope of the inverse function at the corresponding point						
Day 55 §3.6 WS Supplement: Derivatives of Inverse Function Theorem, I WS pp 6.8 (hand numbered pages) 13 Nov can find the derivative of its inverse without knowing the inverse function. finish completely 13 Nov s3.7 implicit Differentiation pp 164-165: 14 Nov Ican implicitly differentiate equations that are not explicitly solved for y. p3 164-165: 14 Nov Ican implicitly differentiate equations that are not explicitly solved for y. HW in NOTES 15 Nov Ican suge at agent line to approximate the value of a function and determine if the approximation using Tangent Lines HW in NOTES 16 Nov S3.10 Mean Value Theorem HW in NOTES pp 3-4 #1-2 HW in NOTES 16 Nov Ican apply the MYT, stating prerequisites, calculating values and drawing conclusions p7 all 17 Nov Ican use the 1 rd and 2 rd derivatives to discuss the behavior of a function. p1 92-196: #1-4, 9, 13, 31, 38, 43 NOTES: pp 3-8 all examples #1-6 p1 92-196: #1-4, 9, 13, 31, 38, 43 NOTES: pp 3-10 Examples #1-6 17 Nov Ican use the 1 rd and 2 rd derivatives to discuss the behavior of a function. p1 92-196: #1-4, 9, 13, 31, 38, 43 NOTES: pp 13-13 and 2 rd derivatives p.136 NOTES: pp 13-13 Examples#1-3 p1 92-196: #1-4, 9, 13, 21, 38, 43 NOTES: p1 1-13 and 2 rd derivat		on the inverse; the slopes are reciprocals.						
Non can find the derivative of its inverse without knowing the inverse function. Inish completely 13 Nov can find the derivative of its inverse without knowing the inverse function. pp 164-165: #3,6,9,12,15,18,23,25,26,31 14 Nov Can implicitly differentiate equations that are not explicitly solved for y. pp 164-165: #3,6,9,12,15,18,23,25,26,31 14 Nov Can implicitly differentiate equations that are not explicitly solved for y. p4 #3-6 15 Nov 1Can use a tangent line to approximate the value of a function and determine if the approximation using Tangent Lines HW in NOTES p 4 #3-6 16 Nov 3.3 Unear Approximation using Tangent Lines HW in NOTES p 7 #3 16 Nov 53.0 Unear Approximation using Tangent Lines HW in NOTES p 7 #43-6 17 Nov I can use the 1 th and 2 ^{thd} derivatives p.186 NOTES: pp 8-10 Examples #1-6 17 Nov - I can use the 1 th and 2 ^{thd} derivatives to discuss the behavior of a function. - I can use the 1 th and 2 ^{thd} derivatives p.186 pp 192-196: #1-4, 9, 13, 31, 38, 43 NOTES: pp 1-10 Examples #1-3 Problems #1-5 problems #1-5 27 Nov - I can use the 1 th and 2 ^{thd} derivatives to discuss the behavior of a function. - I can use the 1 th and 2 ^{thd} derivatives to discuss the behavior of a function. - I can use the 1 th and 2 ^{thd} derivatives to discuss the behavior of a function. - I can use tha 2 ^{thd} Derivative Test to justify relative extrema	Day 55	§3.6 WS Supplement: Derivatives of Inverse Function Theorem		WS pp 6-8	(hand numbered pages)			
13 Nov can find the derivative of its inverse without knowing the inverse function. pp 164-165: Day 56 \$3.7 limplicit Differentiate equations that are not explicitly solved for y. pp 164-165: 14 Nov Ican implicitly differentiate equations that are not explicitly solved for y. HW in NOTES pp 34.81.2 Ved NOTES pp 3.4 #1.2 HW in NOTES pp 3.4 #1.2 P 4#3-6 Sol Uncer Approximation using Tangent Lines HW in NOTES pp 3.4 #1.2 P 4#3-6 Thu The approximation using Tangent Lines HW in NOTES pp 3.4 #1.2 P 4#3-6 Thu This pp 3.4 #1.2 P 4#3-6 P 4#3-6 Thu This pp 3.4 #1.2 P 4#3-6 P 4#3-6 Thu This pp 3.4 #1.2 P 4#3-6 P 4#3-6 Thu This pp 3.5 & 6 all examples and sample problems. F 4#3-6 P 4#3-6 Thu This pp 3.5 & 6 all examples and sample problems. P 7 all P 7 all To to can use the 1ris and Second Derivatives to discuss the behavior of a function. - I can use the 1ris and 2rd derivatives to discuss the behavior of a function. - I can use the 1ris and 2rd derivative exterma (maximum or minimum or terrace point) P 12-196: # 7.4, 9, 13, 31, 38, 43 Day 50 A 1.1 Sumplecif I - A 1 - Derivative Testo 1 ustify relative ex	Mon	If I know the equation of a function, using the Inverse Functio	n Theorem, I	finish com	pletely			
Day 56 \$3.7 Implicit Differentiation NOTES pp 1:2 Examples #1-5 pp 164-165: #3,6,9,12,15,18,23,25,26,31 Have Lean implicitly differentiate equations that are not explicitly solved for y. \$3.9 Linear Approximation using Tangent Lines HW in NOTES Day 57 \$3.9 Linear Approximation using Tangent Lines HW in NOTES p4 #3-6 Day 57 \$3.9 Linear Approximation using Tangent Lines HW in NOTES Repeat NOTES pp 3-4 #1-2 NOTES pp 5-6 all examples and sample problems. I can apply the MVT, stating prerequisites, calculating values and drawing conclusions HW in NOTES pp 192-196: #1-4, 9, 13, 31, 38, 43 Day 58 \$4.1 Using the First and Second Derivatives to discuss the behavior of a function. - I can use the 1 rd and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 rd and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 rd and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 rd and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 rd and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 rd and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 rd and 2 rd derivative set the set terms - I know my vocabulary: critical point, turning point, relative min/max, inflection point pp 192-196: #1-4, 9, 13, 31, 38, 43 Day 61 \$4.1 Using the First and Second Derivatives p.186 pp 192-196: #1-4, 9, 13, 32 NOTES: pp 11-13 Examples#1-3 - I can use ta 1 rd darger	13 Nov	can find the derivative of its inverse without knowing the inverse	e function.		. ,			
TueNOTES pp 1-2 Examples #1-5 (can implicitly differentiate equations that are not explicitly solved for y. Lan implicitly differentiate equations that are not explicitly solved for y.#3,6,9,12,15,18,23,25,26,31Day 57 WedS.9 Linear Approximation using Tangent Lines NOTES pp 3-4 #1-2HW in NOTES p 4 #3-6pDay 57 Stap and the approximation using Tangent Lines If the approximation using Tangent Lines NOTES pp 3-4 #1-2HW in NOTES p 4 #3-6pDay 57 Stap 3-4 #1-2Stap and the approximation using Tangent Lines NOTES pp 3-4 #1-2HW in NOTES p 4 #3-6pDay 58 Sta 10 Mean Value Theorem NOTES pp 5-6 all examples and sample problems. L can apply the MVT, stating prerequisites, calculating values and drawing conclusionsp1 92-196: #1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-6Day 59 Stap 5-10 Lian gete #1 and 2"d derivatives to discuss the behavior of a function. - L can use the 1" Derivative Test to justify relative extrema (minum or terrace point)pp 192-196: #24-30 all, 32 NOTES: pp 11-13 Examples#1-3 Problems #1-5Day 60 Stap 50 No 10 Sts: p 12 1-13 Examples#1-3 Problems #1-5pp 192-196: #7,8,16-19,39,45,46 NOTES: p 11-13 Examples#1-3 Problems #1-6Day 61 No 21 Su 10 Subter First and Second Derivatives p.186 NOTES: p 12 Problems #1-6pp 192-196: #7,8,16-19,39,45,46 NOTES: p 12 Problems #1-4 - L can use calcula techniques to optimize a function, finding the absolute min/max by considering the critical point, turning point, relative entime min/max by considering the critical points and the endpoints of the domain. - L know my vocabulary: absolute/relative minimum & maximum.pp 202-204: #7,38,0,0,13,17,18 NOTES: p15 Problems #1-4<	Day 56	§3.7 Implicit Differentiation		pp 164-16	5:			
14 Nov 1 can implicitly differentiate equations that are not explicitly solved for y. International and the provimation using Tangent Lines HW in NOTES 15 Nov 1 can use a tangent line to approximate the value of a function and determine in the approximation is an over or under estimate. HW in NOTES P a 4#3-6 Day 57 \$3.9 Linear Approximation using Tangent Lines HW in NOTES P a 4#3-6 NoTES pp 3-4 #1-2 P 4#3-6 HW in NOTES P a 4#3-6 Thu 16 Nov NOTES pp 5-6 all examples and sample problems. HW in NOTES P 1 17 Nov 1 can apply the MVT, stating prerequisites, calculating values and drawing conclusions P 192-196: # 1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-6 72 Nov - L can use the 1 th and 2 ^{thd} derivatives to discuss the behavior of a function I can use the 1 th Derivative Test to justify relative extrema (maximum or minimum or terrace point) P 192-196: # 24-30 all, 32 NOTES: pp 11-13 Examples#1-3 74 Not 1 can use the 1 th Derivative Test to justify relative extrema (maximum or minimum or terrace point) P 192-196: # 7.8,16-19,39,45,46 NOTES: p1 1-13 Examples#1-3 74 Not 1 can use the 1 th and 2 conderivatives p.186 pp 192-196: # 7.8,16-19,39,45,46 NOTES: p1 4 Problems #1-5 74 Not 1 can use the 1 th Derivative Test to justify relative extrema (max	Tue	NOTES pp 1-2 Examples #1-5		#3.6.9.12.	15.18.23.25.26.31			
Day 57 \$3.9 Linear Approximation using Tangent Lines HW in NOTES Wed NOTES pp 3.4 #1-2 p 4 #3-6 15 Nov can use a tangent line to approximate the value of a function and determine if the approximation using Tangent Lines p 4 #3-6 Day 57 \$3.9 Linear Approximation using Tangent Lines HW in NOTES p 4 #3-6 NOTES pp 3.4 #1-2 HW in NOTES P 4#3-6 Thu NOTES pp 3.4 #1-2 HW in NOTES P 4#3-6 Thu NOTES pp 3.4 #1-2 HW in NOTES P 4#3-6 16 Nov Lan apply the MVT, stating prerequisites, calculating values and drawing conclusions p 7 all P 4#3-6 Day 58 \$3.10 Mean Value Theorem HW in NOTES p 7 all P 4#3-6 17 Nov I can use the 1 [#] and 2 ^{md} derivatives to discuss the behavior of a function I can use the 1 [#] Derivative Test to justify relative extrema (maximum or minimum or terrace point) pp 192-196: #1-4, 9, 13, 31, 38, 43 NOTES: pp 1-13 Examples#1-3 Problems #1-5 Day 60 NOTES: p 11-13 Examples#1-3 Problems #1-5 NOTES: pp 11-13 Examples#1-3 Problems #1-5 NOTES: p 11-13 Examples#1-3 Problems #1-5 NoTES: p 14 Problems #6-10 MOTES: p 14 Problems #6-10 P 192-196: #7,8,16-19,39,45,46 NOTES: p 14 Problems #1-6 29 Nov	14 Nov	I can implicitly differentiate equations that are not explicitly solv	ed for v.	,.,.,.,,	,,,,,,			
Day 50 PA 11-2 PA 13-6 15 Nov I can use a tangent line to approximate the value of a function and determine if the approximation is an over or under estimate. P 4#3-6 Day 57 53-9 Linear Approximation using Tangent Lines NOTES pp 3-4 #1-2 HW in NOTES Repeat Day P 4#3-6 Thu 16 Nov NOTES pp 3-4 #1-2 HW in NOTES Repeat Day P 4#3-6 Thu 16 Nov S3.10 Mean Value Theorem NOTES: pp 5-6 all examples and sample problems. I can apply the MVT, stating prerequisites, calculating values and drawing conclusions P 192-196: # 1-4, 9, 13, 31, 38, 43 NOTES: pp 3-10 Examples #1-6 Pp 192-196: # 1-4, 9, 13, 31, 38, 43 NOTES: pp 3-10 Examples #1-6 27 Nov - I can use the 1 st and 2 ^{cd} derivatives to discuss the behavior of a function. - I can use the 1 st Derivative Test to justify relative extrema (maximum or minimum or terrace point) pp 192-196: # 24-30 all, 32 Day 60 54.1 Using the First and Second Derivatives p.186 pp 192-196: #7,8,16-19,39,45,46 NOTES: pp 11-13 Example#1-3 Problems #1-5 - - I can use the 2 rd Derivative Test to justify relative extrema - I know my vocabulary: critical point, turning point, relative min/max, inflection point pp 192-196: #7,8,16-19,39,45,46 NOTES: pp 14 Problems #6-10 NOTES: pp 14 Problems #6-10 Pp 202-204: #4,6,12,14,15 Nont NOTES: pp 15 Problems #1-4 - - 1 can use calculus	Day 57	83.9 Linear Approximation using Tangent Lines	ea. e. j.	HW in NO	TES			
Nucl Ican use a tangent line to approximate the value of a function and determine if the approximation is an over or under estimate.Here is a standard	Wed	NOTES nn 3-4 #1-2		n / #3-6	125			
Day 57 33.9 Linear Approximation using Tangent Lines HW in NOTES Repeat Day P 4#3-6 P 4#3-6 Thu 16 Nov 16 Nov P 4#3-6 Pay 58 51.0 Mean Value Theorem Fri NOTES pp 5-6 all examples and sample problems. 17 Nov I can apply the MVT, stating prerequisites, calculating values and drawing conclusions Day 59 54.1 Using the First and Second Derivatives p.186 NOTES: pp 8-10 Examples #1-6 P 192-196: # 1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-6 NOTES: pp 8-10 Examples #1-6 27 Nv - I can use the 1 th and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 th and 2 rd derivatives to discuss the behavior of a function. - I can use the 1 th and 2 rd derivatives to 100000000000000000000000000000000000	15 Nov	I can use a tangent line to approximate the value of a function a	nd determine	p 4 #3-0				
Day 57 Repeat NOTES pp 3-4 #1-2HW in NOTES P 4#3-6Repeat Day P 4#3-616 NovP 4#3-6HW in NOTES P 4#3-616 NovDay 58 S 3.10 Mean Value Theorem I can apply the MVT, stating prerequisites, calculating values and drawing conclusionsHW in NOTES P 7 all17 NovI can apply the MVT, stating prerequisites, calculating values and drawing conclusionsp 7 all27 Nov- I can use the 1 st and 2 st derivatives p.186 NOTES: pp 8-10 Examples #1-6pp 192-196: # 1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-627 Nov I can use the 1 st and 2 st derivatives p.186 NOTES: pp 11-13 Examples#1-3 Problems #1-5pp 192-196: #24-30 all, 32 NOTES: pp 11-13 Examples#1-3 Problems #1-5Day 60 S 41. Using the First and Second Derivatives p.186 NOTES: p14 Problems #1-6pp 192-196: #7,8,16-19,39,45,46 NOTES: p14 Problems #6-10Day 61 S 41. Using the First and Second Derivatives p.186 NOTES: p14 Problems #1-6pp 202-204: #4,6,12,14,15 NOTES: p14 Problems #6-10Day 62 S 42. Optimization p.196 Thu NOTES: p15 Problems #1-4pp 202-204: #4,6,12,14,15 NOTES: p15 Problems #1-4Day 63 S 42. Optimization p.196 NOTES: p15 Problems #3-8pp 202-204: #4,6,12,14,15 NOTES: p15 Problems #5-8Day 64 Day 65S42. Optimization p.196 NOTES: p15 Problems #5-8Day 64 NOTES: p15 Problems #9-12pp 202-204: #2,738,40,41 NOTES: p15 Problems #9-12Day 65 Day 64S42. Optimization p.196 NOTES: p15 Problems #9-12Day 65 Day 64S42. Optimization p.196 NOTES: p15 Problems #9-12Day 65 Day 64S42. Opti	13 1000	if the approximation is an over or under estimate		-				
Day 5993-5 Linear Approximation using rangent LinesPV 4#3-6ThuNOTES pp 3-4 #1-2PV 4#3-6Thu6P7 all16 NovS3.10 Mean Value TheoremP7 allDay 58S3.10 Mean Value TheoremP7 allFriNOTES pp 5-6 all examples and sample problems.p7 all17 NovI can apply the MVT, stating prerequisites, calculating values and drawing conclusionsp1 92-196: #1-4, 9, 13, 31, 38, 43Day 59S4.1 Using the First and Second Derivatives p.186NOTES: pp 8-10 Examples #1-627 Nov- I can use the 1 th and 2 nd derivative to discuss the behavior of a function. - I can use the 1 th Derivative Test to justify relative extrema (maximum or minimum or trarcae point)p1 92-196: #24-30 all, 32Day 60S4.1 Using the First and Second Derivatives p.186p1 912-196: #7,8,16-19,39,45,46NOTES: pp 11-13 Examples#1-3Problems #1-5- I know my vocabulary: critical point, turning point, relative min/max, inflection pointp1 92-196: #7,8,16-19,39,45,46Day 61S4.2 Optimization p.196NOTES: p 14 Problems #6-1029 Nov- I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. - I know my vocabulary: absolute/relative minimum & maximum.p2 20-204: #2,10,13,17,18Day 63S4.2 Optimization p.196P1 202-204: #2,738,40,41NoTEs: p15 Problems #5-8P1 202-204: #2,738,40,41Day 64S4.2 Optimization p.196P2 20-204: #2,738,40,41NoTEs: p15 Problems #9-12P2 20-204: #2,738,40,41 <td< td=""><td>Day E7</td><td>A D Linger Approximation using Tangent Lings</td><td></td><td></td><td>TEC Bonost Day</td><td></td></td<>	Day E7	A D Linger Approximation using Tangent Lings			TEC Bonost Day			
Repear Thu 16 NovNOTES pp 5-4 #1-2P 4#5-0Day 58\$3.10 Mean Value Theorem NOTES pp 5-6 all examples and sample problems. I can apply the MVT, stating prerequisites, calculating values and drawing conclusionsHW in NOTES p 7 allDay 59\$4.1 Using the First and Second Derivatives p.186 NOTES: pp 8-10 Examples #1-6pp 192-196: # 1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-627 Nov - I can use the 1 st Derivative Test to justify relative extrema (maximum or 	Day 37	NOTES pp 2.4.#1.2			TES Repeat Day			
Intu 10 NovHW in NOTES p 3.10 Mean Value Theorem NOTES pp 5-6 all examples and sample problems. I can apply the MVT, stating prerequisites, calculating values and drawing conclusionsHW in NOTES p 7 allDay 59 Not S4.1 Using the First and Second Derivatives p.186 NoTES: pp 8-10 Examples #1-6pp 192-196: #1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-627 Nov I can use the 1 st and 2 nd derivatives to discuss the behavior of a function. I can use the 1 st and 2 nd derivatives p.186 NOTES: pp 11-113 Examples#1-3 Problems #1-5pp 192-196: #24-30 all, 32 NOTES: pp 11-113 Examples#1-3 Problems #1-5Day 60 S4.1 Using the First and Second Derivatives p.186 NOTES: pp 11-113 Examples#1-3 Problems #1-5pp 192-196: #24-30 all, 32 NOTES: pp 11-13 Examples#1-3 Problems #1-5Day 61 S4.1 Using the First and Second Derivatives p.186 NOTES: p 14 Problems #6-10pp 192-196: #7,8,16-19,39,45,46 NOTES: p 14 Problems #6-10Day 62 S9 84.2 Optimization p.196 NOVpp 202-204: #4,6,12,14,15 NOTES: p 15 Problems #1-4No Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical point sand the endpoints of the domain. I can use calculus techniques to optimize a function, finding the absolute min/max by	ты	NOTES pp 5-4 #1-2		P 4#5-0				
16 NOV \$3.10 Mean Value Theorem HW in NOTES Pay 58 \$3.10 Mean Value Theorem HW in NOTES Fri NOTES pp 5-6 all examples and sample problems. p 7 all 17 Nov I can apply the MVT, stating prerequisites, calculating values and drawing conclusions p 7 all Day 59 \$4.1 Using the First and Second Derivatives p.186 pp 192-196: # 1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-6 NOTES: pp 8-10 Examples #1-6 - I can use the 1 st Derivative Test to justify relative extrema (maximum or minimum or terrace point) pp 192-196: # 24-30 all, 32 Day 60 \$4.1 Using the First and Second Derivatives p.186 pp 192-196: # 7,8,16-19,39,45,46 NOTES: pp 11-13 Examples#1-3 Problems #1-5 NOTES: pp 11-13 Examples#1-3 - I can use the 2 rd Derivative Test to justify relative extrema - I know my vocabulary: critical point, turning point, relative min/max, inflection point pp 192-196: #7,8,16-19,39,45,46 NoTES: p1 14 Problems #6-10 pp 192-204: #4,6,12,14,15 NOTES: p15 Problems #1-4 29 Nov -1 can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain1 know my vocabulary: absolute/relative minimum & maximum. Derivative Rules Day 63 \$4.2 Optimization p.196 pp 202-204: #8,10,13,17,18 <t< td=""><td>10</td><td></td><td></td><td></td><td></td><td></td></t<>	10							
Day SoS.J.U Wean Value InformHW in NUTESFriNOTES pp 5-6 all examples and sample problems.p 7 all17 NovI can apply the MVT, stating prerequisites, calculating values and drawing conclusionsp 7 all17 NovI can apply the First and Second Derivatives p.186pp 192-196: # 1-4, 9, 13, 31, 38, 43MonNOTES: pp 8-10 Examples #1-6NOTES: pp 8-10 Examples #1-627 Nov I can use the 1 st and 2 nd derivatives to discuss the behavior of a function. I can use the 1 st derivative Test to justify relative extrema (maximum or minimum or terrace point)pp 192-196: #24-30 all, 32Day 60§4.1 Using the First and Second Derivatives p.186pp 192-196: #24-30 all, 32TueNOTES: pp 11-13 Examples#1-3 Problems #1-5NOTES: pp 11-13 Examples#1-328 Nov- I can use the 2 nd Derivative Test to justify relative extrema - I know my vocabulary: critical point, turning point, relative min/max, inflection pointpp 192-196: #7,8,16-19,39,45,46WedNOTES: p 14 Problems #6-10pp 202-204: #4,6,12,14,15Day 62§4.2 Optimization p.196pp 202-204: #4,6,12,14,15ThuNOTES: p15 Problems #1-4NOTES: p15 Problems #1-430 Nov- I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. - I know my vocabulary: absolute/relative minimum & maximum.pp 202-204: #8,10,13,17,18Day 64§4.2 Optimization p.196NOTES: p15 Problems #5-8Pp 202-204: #2,7,38,40,41Day 64§4.2 Optimization p.196NOTES: p15 Problems #9-12NOTES: p15 Pro	16 NOV				TC			
Fri NOTES: pp 5-6 all examples and sample problems. Loan apply the MVT, stating prerequisites, calculating values and drawing conclusions p 7 all Day 59 \$4.1 Using the First and Second Derivatives p.186 Mon pp 192-196: # 1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-6 27 Nov - I can use the 1 st and 2 nd derivatives to discuss the behavior of a function. I can use the 1 st Derivative Test to justify relative extrema (maximum or minimum or terrace point) pp 192-196: #24-30 all, 32 NOTES: pp 11-13 Examples#1-3 Problems #1-5 Day 60 \$4.1 Using the First and Second Derivatives p.186 NOTES: pp 11-13 Examples#1-3 Problems #1-5 pp 192-196: #7,8,16-19,39,45,46 NOTES: pp 14 Problems #1-5 Problems #1-6 NOTES: pp 14-13 Examples#1-3 Problems #1-5 28 Nov - I can use the 2 rd Derivative Test to justify relative extrema - I know my vocabulary: critical point, turing point, relative min/max, inflection point pp 192-196: #7,8,16-19,39,45,46 NOTES: p 14 Problems #6-10 Day 61 \$4.2 Optimization p.196 NOTES: p 15 Problems #1-4 NOTES: p 15 Problems #1-4 30 Nov - I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. - I know my vocabulary: absolute/relative minimum & maximum. Derivative Rules Day 63 \$4.2 Optimization p.196 NOTES: p 15 Problems #5-8 pp 202-204: #8,10,13,17,18 NOTES: p 15 Problems #9-12 Day 64 \$	Day 58	\$3.10 Mean Value Theorem		HW IN NO	IES			
17 NovI can apply the MVT, stating prerequisites, calculating values and drawing conclusionspp 192-196: # 1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-6Day 59 \$4.1 Using the First and Second Derivatives p.186 NoTES: pp 8-10 Examples #1-6pp 192-196: # 1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-627 Nov- I can use the 1 st Derivative Test to justify relative extrema (maximum or minimum or terrace point)pp 192-196: # 24-30 all, 32Day 60 \$4.1 Using the First and Second Derivatives p.186 NOTES: pp 11-13 Examples#1-3 Problems #1-5pp 192-196: # 24-30 all, 3228 Nov- I can use the 2 nd Derivative Test to justify relative extrema - I know my vocabulary: critical point, turning point, relative min/max, inflection pointpp 192-196: # 7,8,16-19,39,45,46Day 61 \$4.1 Using the First and Second Derivatives p.186 NOTES: p 14 Problems #6-10pp 192-196: # 7,8,16-19,39,45,46Day 62 \$4.2 Optimization p.196 nortes: p 15 Problems #1-4pp 202-204: # 4,6,12,14,15Thu NOTES: p 15 Problems #1-4pp 202-204: # 4,6,12,14,1530 Nov- I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. - I know my vocabulary: absolute/relative minimum & maximum.Ch 3 TEST Corrections for Derivative RulesDay 64 \$4.2 Optimization p.196 NOTES: p15 Problems #5-8pp 202-204: # 8,10,13,17,18DaySi fins hereis % 15pp 202-204: # 27,38,40,41NOTES: p15 Problems #9-12pp 202-204: # 27,38,40,41NoTES: p15 Problems #9-12pp 202-204: # 27,38,40,41Nortes: p15 Problem	Fri	NOTES pp 5-6 all examples and sample problems.		p / all				
Conclusionspp 192-196: #1-4, 9, 13, 31, 38, 43Day 59 \$4.1 Using the First and 2 nd derivatives to discuss the behavior of a function. – I can use the 1 st and 2 nd derivatives to discuss the behavior of a function. – I can use the 1 st and 2 nd derivatives to to guistify relative extrema (maximum or minimum or terrace point)pp 192-196: #1-4, 9, 13, 31, 38, 43 NOTES: pp 8-10 Examples #1-6Day 60 \$4.1 Using the First and Second Derivatives p.186 – I can use the 2 nd Derivative Test to justify relative extrema – I know my vocabulary: critical point, turning point, relative min/max, 	17 Nov	I can apply the MVT, stating prerequisites, calculating values and	drawing					
Day 5954.1 Using the First and Second Derivatives p.186pp 192-196: #1-4, 9, 13, 31, 38, 43MonNOTES: pp 8-10 Examples #1-6-1 can use the 1 th and 2 nd derivatives to discuss the behavior of a function. -1 can use the 1 th and 2 nd derivatives to discuss the behavior of a function. -1 can use the 1 th and 2 nd derivatives to discuss the behavior of a function. -1 can use the 1 th and 2 nd derivatives to discuss the behavior of a function. -1 can use the 1 th and 2 nd derivatives to discuss the behavior of a function. -1 can use the 1 th and 2 nd derivatives to discuss the behavior of a function. -1 can use the 1 th and 2 nd derivatives to discuss the behavior of a function. -1 can use the 1 th and 2 nd derivatives to discuss the behavior of a function. -1 can use the 2 nd Derivative Test to justify relative extrema -1 know my vocabulary: critical point, turning point, relative min/max, inflection pointpp 192-196: #7.8,16-19.39,45,46 NOTES: p 14 Problems #6-10Day 61 54.1 Optimization p.196 NOTES: p 14 Problems #1-4pp 202-204: #4,6,12,14,15 NOTES: p 14 Problems #1-4Day 62 54.2 Optimization p.196 NOTES: p 15 Problems #1-4pp 202-204: #4,6,12,14,15 NOTES: p 15 Problems #1-4Day 63 54.2 Optimization p.196 NOTES: p 15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p 15 Problems #5-81 Decpp 202-204: #27,38,40,41 NOTES: p 15 Problems #9-12pp 202-204: #27,38,40,41 NOTES: p 15 Problems #9-12A DecCh 3 & Ch 4 (part 1) Review WS #1-18pp 202-204: #27,38,40,41 NOTES: p 15 Problems #9-12A DecCh 3 & Ch 4 (part 1) Review WS #1-18pp 202-204: #27,38,40,41 NOTES: p 15 Problems #9-12 <td></td> <td>conclusions</td> <td></td> <td></td> <td></td> <td></td>		conclusions						
MonNOTES: pp 8-10 Examples #1-6NOTES: pp 8-10 Examples #1-627 Nov I can use the 1st and 2nd derivatives to discuss the behavior of a function. I can use the 1st operivative Test to justify relative extrema (maximum or minimum or terrace point)pp 192-196: #24-30 all, 32Day 60 §4.1 Using the First and Second Derivatives p.186 pp 192-196: #24-30 all, 32TueNOTES: pp 11-13 Examples#1-3 Problems #1-5NOTES: pp 11-13 Examples#1-3 I can use the 2nd Derivative Test to justify relative extrema I can use the 2nd Derivative Test to justify relative extrema I know my vocabulary: critical point, turning point, relative min/max, inflection pointpp 192-196: #7,8,16-19,39,45,46Day 61 §4.2 Optimization p.196 NOTES: p 14 Problems #6-10pp 202-204: #4,6,12,14,15Day 62 §4.2 Optimization p.196 NOTES: p 15 Problems #1-4NOTES: p15 Problems #1-430 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.pp 202-204: #4,6,12,14,15Day 63 §4.2 Optimization p.196 pp 202-204: #8,10,13,17,18FriNOTES: p15 Problems #5-8pp 202-204: #27,38,40,41MoreNOTES: p15 Problems #9-12PDay 64 \$4.2 Optimization p.196 NOTES: p15 Problems #9-12A Dec	Day 59	§4.1 Using the First and Second Derivatives p.186		pp 192-19	6: # 1-4, 9, 13, 31, 38, 43			
27 Nov I can use the 1 st and 2 ^{no} derivatives to discuss the behavior of a function. I can use the 1 st Derivative Test to justify relative extrema (maximum or minimum or terrace point) pp 192-196: #24-30 all, 32 Day 60 §4.1 Using the First and Second Derivatives p.186 pp 192-196: #24-30 all, 32 NOTES: pp 11-13 Examples#1-3 Problems #1-5 NOTES: pp 11-13 Examples#1-3 - I can use the 2 nd Derivative Test to justify relative extrema Problems #1-5 - I know my vocabulary: critical point, turning point, relative min/max, inflection point pp 192-196: #7,8,16-19,39,45,46 NOTES: p1 Problems #6-10 NOTES: p1 Problems #6-10 Day 62 §4.2 Optimization p.196 pp 202-204: #4,6,12,14,15 Notes: p1 Problems #1-4 NOTES: p15 Problems #1-4 NOTES: p15 Problems #1-4 30 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum. Day 63 §4.2 Optimization p.196 pp 202-204: #8,10,13,17,18 NoTES: p15 Problems #5-8 NOTES: p15 Problems #5-8 Dec Day 64 §4.2 Optimization p.196 pp 202-204: #27,38,40,41 NoTES: p15 Problems #9-12 NOTES: p15 Problems #9-12 Dec	Mon	NOTES: pp 8-10 Examples #1-6		NOTES: p	p 8-10 Examples #1-6			
I can use the 1 st Derivative Test to justify relative extrema (maximum or minimum or terrace point)pp 192-196: #24-30 all, 32Day 60§4.1 Using the First and Second Derivatives p.186pp 192-196: #24-30 all, 32NOTES: pp 11-13 Examples#1-3 Problems #1-5NOTES: pp 11-13 Examples#1-328 Nov I can use the 2 nd Derivative Test to justify relative extrema I know my vocabulary: critical point, truining point, relative min/max, inflection pointProblems #1-5Day 61§4.1 Using the First and Second Derivatives p.186 NOTES: p 14 Problems #6-10pp 192-196: #7,8,16-19,39,45,46 NOTES: p 14 Problems #6-10Day 62§4.2 Optimization p.196 NOTES: p15 Problems #1-4pp 202-204: #4,6,12,14,15 NOTES: p15 Problems #1-430 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.Da 763 Derivative RulesDay 63§4.2 Optimization p.196 NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-8Day 64§4.2 Optimization p.196 NOTES: p15 Problems #9-12pp 202-204: #27,38,40,41 NOTES: p15 Problems #9-12Day 64§4.2 Optimization p.196 NOTES: p15 Problems #9-12pp 202-204: #27,38,40,41 NOTES: p15 Problems #9-12Day 65Review Finish Review SheetCh 3 & Ch 4 (part 1) Review WS #1-18Day 66 C h 4 TEST (part 1)Ch 3 & Ch 4 (part 1) Review	27 Nov	I can use the 1 st and 2 nd derivatives to discuss the behavior of a	a function.					
minimum or terrace point)pp 192-196: #24-30 all, 32Day 60§4.1 Using the First and Second Derivatives p.186NOTES: pp 11-13 Examples#1-3 Problems #1-5TueNOTES: pp 11-13 Examples#1-3 Problems #1-5NOTES: pp 11-13 Examples#1-328 Now I can use the 2 nd Derivative Test to justify relative extrema I know my vocabulary: critical point, turning point, relative min/max, inflection pointProblems #1-5Day 61§4.1 Using the First and Second Derivatives p.186pp 192-196: #7,8,16-19,39,45,46WedNOTES: p 14 Problems #6-10NOTES: p 14 Problems #6-1029 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.pp 202-204: #4,6,12,14,15 NOTES: p15 Problems #1-4Day 63§4.2 Optimization p.196 NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-8Day 64§4.2 Optimization p.196 NOTES: p15 Problems #5-8pp 202-204: #27,38,40,41 NOTES: p15 Problems #5-8Day 64§4.2 Optimization p.196 NOTES: p15 Problems #9-12pp 202-204: #27,38,40,41 NOTES: p15 Problems #9-12Day 64§4.2 Optimization p.196 NOTES: p15 Problems #9-12pp 202-204: #27,38,40,41 NOTES: p15 Problems #9-12Day 65Review Finish Review SheetCh 3 & Ch 4 (part 1) Review WS #1-18S Dec		I can use the 1 st Derivative Test to justify relative extrema (ma	ximum or					
Day 60 Tue§4.1 Using the First and Second Derivatives p.186pp 192-196: #24-30 all, 32NOTES: pp 11-13 Examples#1-3 Problems #1-5NOTES: pp 11-13 Examples#1-3NOTES: pp 11-13 Examples#1-328 Nov I can use the 2 nd Derivative Test to justify relative extrema I know my vocabulary: critical point, truning point, relative min/max, inflection pointProblems #1-5Day 61 29 Nov§4.1 Using the First and Second Derivatives p.186 NOTES: p 14 Problems #6-10pp 192-196: #7,8,16-19,39,45,46 NOTES: p 14 Problems #6-10Day 62 29 Nov§4.2 Optimization p.196 min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.pp 202-204: #4,6,12,14,15 NOTES: p15 Problems #1-430 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum. <i>Ch 3 TEST Corrections for</i> Derivative RulesDay 63 54.2 Optimization p.196 NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-8NOTES: p15 Problems #5-81 Dec		minimum or terrace point)						
TueNOTES: pp 11-13 Examples#1-3 Problems #1-5NOTES: pp 11-13 Examples#1-328 Nov- I can use the 2 nd Derivative Test to justify relative extrema I know my vocabulary: critical point, turning point, relative min/max, inflection pointProblems #1-5Day 61\$4.1 Using the First and Second Derivatives p.186pp 192-196: #7,8,16-19,39,45,46WedNOTES: p 14 Problems #6-10pp 202-204: #4,6,12,14,1529 Novpp 202-204: #4,6,12,14,15Day 62\$4.2 Optimization p.196pp 202-204: #4,6,12,14,15NOTES: p 15 Problems #1-4NOTES: p 15 Problems #1-430 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.Ch 3 TEST Corrections for Derivative RulesDay 63\$4.2 Optimization p.196pp 202-204: #8,10,13,17,18NOTES: p15 Problems #5-8pp 202-204: #27,38,40,41NOTES: p15 Problems #5-8pp 202-204: #27,38,40,41Nortes: p15 Problems #9-12pp 202-204: #27,38,40,41Day 64\$4.2 Optimization p.196Nortes: p15 Problems #9-12pp 202-204: #27,38,40,41Day 65ReviewCh 3 & Ch 4 (part 1) ReviewTueFinish Review SheetWS #1-185 Dec	Day 60	§4.1 Using the First and Second Derivatives p.186		pp 192-19	6: #24-30 all, 32			
28 Nov - I can use the 2nd Derivative Test to justify relative extrema - I know my vocabulary: critical point, turning point, relative min/max, inflection pointProblems #1-5Day 61 94.1 Using the First and Second Derivatives p.186 Wed 29 Novpp 192-196: #7,8,16-19,39,45,46 NOTES: p 14 Problems #6-10pp 192-204: #7,8,16-19,39,45,46 NOTES: p 14 Problems #6-10Day 62 94.2 Optimization p.196 min/max by considering the critical points and the endpoints of the domain. - I know my vocabulary: absolute/relative minimum & maximum.pp 202-204: #4,6,12,14,15 NOTES: p15 Problems #1-4Day 63 Fri Day 64 4 Dec54.2 Optimization p.196 NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-8Day 64 4 Dec54.2 Optimization p.196 NOTES: p15 Problems #9-12pp 202-204: #27,38,40,41 NOTES: p15 Problems #9-12Day 65 Log 6Review Finish Review SheetCh 3 KCh 4 (part 1) Review WS #1-18Day 66 Ch 4 TEST (part 1)Ch 4 TEST (part 1)	Tue	NOTES: pp 11-13 Examples#1-3 Problems #1-5		NOTES: p	p 11-13 Examples#1-3			
I know my vocabulary: critical point, turning point, relative min/max, inflection pointpp 192-196: #7,8,16-19,39,45,46Day 61§4.1 Using the First and Second Derivatives p.186pp 192-196: #7,8,16-19,39,45,46WedNOTES: p 14 Problems #6-10NOTES: p 14 Problems #6-10Day 62§4.2 Optimization p.196pp 202-204: #4,6,12,14,15ThuNOTES: p 15 Problems #1-4NOTES: p 15 Problems #1-430 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.Ch 3 TEST Corrections for Derivative RulesDay 63§4.2 Optimization p.196pp 202-204: #8,10,13,17,18FriNOTES: p 15 Problems #5-8pp 202-204: #27,38,40,411 DecNOTES: p 15 Problems #9-12NOTES: p 15 Problems #9-12Day 64§4.2 Optimization p.196pp 202-204: #27,38,40,41MonNOTES: p 15 Problems #9-12NOTES: p 15 Problems #9-12Day 65ReviewCh 3 & Ch 4 (part 1) ReviewTueFinish Review SheetWs #1-185 Dec	28 Nov	I can use the 2 nd Derivative Test to justify relative extrema		Problems	#1-5			
inflection pointpp 192-196: #7,8,16-19,39,45,46Day 61§4.1 Using the First and Second Derivatives p.186pp 192-196: #7,8,16-19,39,45,46WedNOTES: p 14 Problems #6-10NOTES: p 14 Problems #6-1029 Novpp 202-204: #4,6,12,14,15NOTES: p15 Problems #1-4Day 62§4.2 Optimization p.196pp 202-204: #4,6,12,14,15ThuNOTES: p15 Problems #1-4NOTES: p15 Problems #1-430 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.Ch 3 TEST Corrections for Derivative RulesDay 63§4.2 Optimization p.196pp 202-204: #8,10,13,17,18FriNOTES: p15 Problems #5-8NOTES: p15 Problems #5-81 Decpp 202-204: #27,38,40,41MonNOTES: p15 Problems #9-124 DecPp 202-204: #27,38,40,41MonNOTES: p15 Problems #9-124 DecCh 3 & Ch 4 (part 1) ReviewTueFinish Review SheetWS #1-185 DecDay 66Ch 4 TEST (part 1)		I know my vocabulary: critical point, turning point, relative mi	n/max,					
Day 61§4.1 Using the First and Second Derivatives p.186pp 192-196: #7,8,16-19,39,45,46WedNOTES: p 14 Problems #6-10NOTES: p 14 Problems #6-1029 NovPay 62§4.2 Optimization p.196pp 202-204: #4,6,12,14,15ThuNOTES: p 15 Problems #1-4NOTES: p 15 Problems #1-430 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.Ch 3 TEST Corrections for Derivative RulesDay 63§4.2 Optimization p.196pp 202-204: #8,10,13,17,18NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,181 DecNOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18Day 64§4.2 Optimization p.196pp 202-204: #27,38,40,41MonNOTES: p15 Problems #9-12NOTES: p15 Problems #9-124 Dec		inflection point						
Wed 29 NovNOTES: p 14 Problems #6-10NOTES: p 14 Problems #6-10Day 62 54.2 Optimization p.196\$4.2 Optimization p.196pp 202-204: #4,6,12,14,15NOTES: p15 Problems #1-4NOTES: p15 Problems #1-4NOTES: p15 Problems #1-430 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.Ch 3 TEST Corrections for Derivative RulesDay 63 54.2 Optimization p.196 NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-8Day 64 4 Dec\$4.2 Optimization p.196 NOTES: p15 Problems #9-12pp 202-204: #27,38,40,41 NOTES: p15 Problems #9-12Day 65 Finish Review SheetCh 3 & Ch 4 (part 1) Review WS #1-18WS #1-18Day 66 C Ch 4 TEST (part 1)Ch 4 TEST (part 1)Image: Chart 1	Day 61	§4.1 Using the First and Second Derivatives p.186		pp 192-19	6: #7,8,16-19,39,45,46			
29 NovSectorSecto	Wed	NOTES: p 14 Problems #6-10		NOTES: p	14 Problems #6-10			
Day 62 Thu§4.2 Optimization p.196pp 202-204: #4,6,12,14,15NOTES: p15 Problems #1-4NOTES: p15 Problems #1-430 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.Ch 3 TEST Corrections for Derivative RulesDay 63 Fri§4.2 Optimization p.196 NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-81 Decpp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-8NOTES: p15 Problems #5-81 Decpp 202-204: #27,38,40,41 NOTES: p15 Problems #9-12Pp 202-204: #27,38,40,41 NOTES: p15 Problems #9-122 DecPoetCh 3 & Ch 4 (part 1) Review WS #1-18PhileDay 66 Ch 4 TEST (part 1)Ch 4 TEST (part 1)Phile	29 Nov							
ThuNOTES: p15 Problems #1-4NOTES: p15 Problems #1-430 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.Ch 3 TEST Corrections for Derivative RulesDay 63§4.2 Optimization p.196 NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-81 DecDay 64§4.2 Optimization p.196 NOTES: p15 Problems #9-12pp 202-204: #27,38,40,41 NOTES: p15 Problems #9-12Day 64§4.2 Optimization p.196 NOTES: p15 Problems #9-12pp 202-204: #27,38,40,41 NOTES: p15 Problems #9-12Day 65Review Finish Review SheetCh 3 & Ch 4 (part 1) Review WS #1-18Day 66Ch 4 TEST (part 1)Wed G Dec	Day 62	§4.2 Optimization p.196		pp 202-20)4: #4,6,12,14,15			
30 Nov I can use calculus techniques to optimize a function, finding the absolute min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.Ch 3 TEST Corrections for Derivative RulesDay 63§4.2 Optimization p.196 NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-8pp 202-204: #8,10,13,17,18 NOTES: p15 Problems #5-81 Dec	Thu	NOTES: p15 Problems #1-4		NOTES: p	15 Problems #1-4			
min/max by considering the critical points and the endpoints of the domain. I know my vocabulary: absolute/relative minimum & maximum.Ch 3 TEST Corrections for Derivative RulesDay 63§4.2 Optimization p.196pp 202-204: #8,10,13,17,18NOTES: p15 Problems #5-8T Decno TES: p15 Problems #5-8pp 202-204: #27,38,40,41NOTES: p15 Problems #5-8Day 64§4.2 Optimization p.196pp 202-204: #27,38,40,41NOTES: p15 Problems #9-12MonNOTES: p15 Problems #9-12NOTES: p15 Problems #9-12PocDay 65ReviewCh 3 & Ch 4 (part 1) ReviewWS #1-185 DecDay 66Ch 4 TEST (part 1)Ved6 DecFor the section of the	30 Nov	I can use calculus techniques to optimize a function, finding th	e absolute					
I know my vocabulary: absolute/relative minimum & maximum.Derivative RulesDay 63§4.2 Optimization p.196pp 202-204: #8,10,13,17,18FriNOTES: p15 Problems #5-8NOTES: p15 Problems #5-81 Decpp 202-204: #27,38,40,41Day 64§4.2 Optimization p.196pp 202-204: #27,38,40,41MonNOTES: p15 Problems #9-12pp 202-204: #27,38,40,41MonNOTES: p15 Problems #9-12Ch 3 & Ch 4 (part 1) Review4 DecPrinish Review SheetWS #1-185 DecDay 66Ch 4 TEST (part 1)WedG DecFinish Review SheetFinish Review Sheet		min/max by considering the critical points and the endpoints of	the domain.	Ch 3 TEST	Corrections for			
Day 63 §4.2 Optimization p.196 pp 202-204: #8,10,13,17,18 Fri NOTES: p15 Problems #5-8 NOTES: p15 Problems #5-8 1 Dec pp 202-204: #27,38,40,41 Day 64 §4.2 Optimization p.196 pp 202-204: #27,38,40,41 Mon NOTES: p15 Problems #9-12 NOTES: p15 Problems #9-12 4 Dec		I know my vocabulary: absolute/relative minimum & maximur	n.	Derivative	e Rules			
Fri 1 DecNOTES: p15 Problems #5-8NOTES: p15 Problems #5-81 Decpp 202-204: #27,38,40,41Day 64§4.2 Optimization p.196Mon A DecNOTES: p15 Problems #9-124 Decnotes: p15 Problems #9-12Day 65ReviewFinish Review SheetCh 3 & Ch 4 (part 1) Review5 Decws #1-18Day 66Ch 4 TEST (part 1)Wed6 Dec	Day 63	§4.2 Optimization p.196		pp 202-20	4: #8,10,13,17,18			
1 Dec Image: problem set of the	Fri	NOTES: p15 Problems #5-8		NOTES: p	15 Problems #5-8			
Day 64 §4.2 Optimization p.196 pp 202-204: #27,38,40,41 pp 202-204: #27,38,40,41 Mon NOTES: p15 Problems #9-12 NOTES: p15 Problems #9-12 4 Dec Problems #9-12 Problems #9-12 Day 65 Review Ch 3 & Ch 4 (part 1) Review Tue Finish Review Sheet WS #1-18 5 Dec Problems 10 Problems 10 Day 66 Ch 4 TEST (part 1) Problems 10 Wed For the second to	1 Dec				-			
MonNOTES: p15 Problems #9-12NOTES: p15 Problems #9-124 DecNOTES: p15 Problems #9-12Day 65ReviewTueFinish Review Sheet5 DecWS #1-18Day 66Ch 4 TEST (part 1)WedFor the second secon	Dav 64	§4.2 Optimization p.196		pp 202-20	4: #27,38.40.41			
4 Dec Image: State of the s	Mon	NOTES: p15 Problems #9-12		NOTES: n	15 Problems #9-12			
Day 65 Review Ch 3 & Ch 4 (part 1) Review Tue Finish Review Sheet WS #1-18 5 Dec Day 66 Ch 4 TEST (part 1) Wed For the second	4 Dec			P				
Tue Finish Review Sheet WS #1-18 5 Dec Day 66 Ch 4 TEST (part 1) Wed 6 Dec 0	Day 65	Review		Ch 3 & Ch	4 (part 1) Review			
5 Dec Image: State of the s	Tue	Finish Review Sheet		WS #1-18	(<u></u>)			
Day 66 Ch 4 TEST (part 1) Wed 6 Dec	5 Dec							
Wed 6 Dec	Day 66	Ch 4 TEST (part 1)						
6 Dec	Wed							
	6 Dec							

Chapter 4 (part 2): Derivative Applications

Name_

Assignme	nt Sheet nerio	2	3	4	
Assignme	Tania	<u> </u>		4	011
Assn			HW	- "2 2 C 0	Qty
Day 67	§4.3 Optimization & Modeling p.205		pp 210-21	5: #2,3,6,9	
Thu	NOTES: pp 16-17 Example #1 & Problems #2-4		NOTES pp	16-17: Problems #1-4	
7 Dec	I can write an equation to model a situation using a secondary f	ormula if			
	needed and only one variable. I can use calculus methods to find	and justify a			
	maximum or minimum.				
Day 68	§4.3 Optimization & Modeling p.205		pp 210-21	5: #11,14,20, 23	
Fri	NOTES: pp 17 Problems #11,13,5,6		NOTES pp	17: #11,13,5,6	
8 Dec	I can read critically, sketch graphs, write equations to model sce	narios, do			
	calculus, justify my conclusion using calculus and answer the ques	tion in the	Ch 3 & 4	TEST returned today.	
	context of the problem scenario.		Correc	ctions due Fri 15 Dec	
Day 69	§4.3 Optimization & Modeling p.205		pp 210-21	5: #17,24,25,28,42	
Mon	NOTES: pp 17 Problems #10,7,8,9,12		NOTES pp	17: #10,7,8,9,12	
11 Dec	I can read critically, sketch graphs, write equations to model sce	narios, do			
	calculus, justify my conclusion using calculus and answer the gues	tion in the			
	context of the problem scenario.				
Day 70	84.6 Rates and Related Rates n 233		HW in NO	TFS [.] n 20 #1-3 6	
Tue	NOTES: nn 18-20: related rates #1-15 formulas & examples #1-3		NOTES: nn	19-20' examples #1-3	
	I can read critically sketch graphs write equations to model so	anarios do	NOTES: pp	15 20. examples #1 5	
12 Dec	calculus justify my conclusion using calculus and answer the ques	tion in the			
	context of the problem scenario				
Day 71	64.6 Poloted Potes n 222		nn 227 24	2, #17 25 27 20	
	94.0 Related Rates p.255		pp 257-24	Z. #17,23,27,29	
12 Dec	HW III NOTES: p 20 examples #4-5	to time o		TES: p 20 examples #4-5	
13 Dec	I can use a correct formula, implicitly differentiate with respect	to time,			
	solve for a rate, evaluate using given information at a particular m	ioment in			
	time to find the rate and interpret the answer within the context of	of the			
	problem scenario.				
Day 72	§4.6 Related Rates p.233		pp 237-24	2: #18,33,35,38	
Thu	HW: p 20 problems #4-5		HW NOTES	S: p 20 problems #4-5	
14 Dec	I can use a correct formula, implicitly differentiate with respect	to time,			
	solve for a rate, evaluate using given information at a particular m	oment in			
	time to find the rate and interpret the answer within the context of	of the			
	problem scenario.				
Day 73	Derivative Applications Review		Optimizati	on Review #10-15	
Fri	WS: Six Standard Related Rates Problems we are expected to know	w. #1-3	Ch 3 &	Ch 4 Test Corrections	
15 Dec	I can demonstrate my understanding of solving optimization pr	oblems on		Due Today	
	the review in preparation for the test.				
Day 74	Derivative Applications Review		Related Ra	ates Review #1-9	
Mon	WS: Six Standard Related Rates Problems we are expected to know	<i>w</i> . #4-6			
18 Dec	I can demonstrate my understanding of solving related rates pr	oblems on			
	the review in preparation for the test.				
Day 75	Final Derivative Applications Review				
Tue					
19 Dec					
Day 76	TEST Derivative Applications				
Wed					
20 Dec					
Day 77	AP Problems				
Thu					
21 Dec					
Day 78	AP Problems		1		1
Fri					
22 Dec					
	1		1		