Chapter 3: Derivative Rules Assignment Sheet		3		
Assn	Topic		HW	Qty
Day 39 Tue 17 Oct	§3.1 Powers \& Polynomials --- I can re-write any expression so that is in the form $a x^{n}$ --- I can use the power rule to take a derivative of $a x^{n}$ where n is any positive or negative, integer, rational or irrational number.	$\begin{aligned} & \text { pp 129-130: } \\ & \# 3-5,6-36 \text { (multiples of } 3 \text {), } 23,35 \end{aligned}$	17	
Day 40 Thu 19 Oct	§3.1 Powers \& Polynomials --- I can re-write any expression so that is in the form $a x^{n}$ --- I can use the power rule to take a derivative of $a x^{n}$ where n is any positive or negative, integer, rational or irrational number.	pp 129-130: \# 38-49 even, 56, 58, 62, 68, 83-90	15	
Day 41 Fri 20 Oct	§3.2 The Exponential Function --- I can take the derivative of exponential function $y=e^{x} \& y=b^{x}, b>1$	pp 135-136: \#3-24 (multiples of 3), $38,39,42,43,45$	13	
Day 42 Mon 23 Oct	§3.3 The Product Rule \& Quotient Rule --- I can take the derivative of a product or quotient of two functions.	Do Product Rule questions: pp 139-140: \#3, 6, 30, 31, 52 (a-b)	5	
Day 43 Tue 24 Oct	§3.3 The Product Rule \& Quotient Rule --- I can take the derivative of a product or quotient of two functions.	Do Quotient Rule questions: pp 139-140: \#9-27 (multiples of 3), 32, 52 (c)	8	
Day 44 Wed 25 Oct	§3.1 through §3.4 Clean Up Day for all the rules: --power--exponential--product--quotient--chain--	```Rules Review pp 180-181: #1, 4*, 10, 24 get LCD , 50, 58, 59, 68* *Simplify after differentiating```	10	
Day 45 Thu 26 Oct	TODAY Quiz Derivative Rules §3.1-§3.4 --power--exponential--product--quotient--chain-- §3.4 The Chain Rule ---I can recognize the inner function and the outer function of a composition. ---I can take the derivative of a composition of functions using the chain rule.	$\begin{aligned} & \text { pp 146-147: } \\ & \text { \#3-11 (odd),21,28,33,36, } \\ & 41,45,57-58,71 \end{aligned}$	15	
	$2^{\text {nd }}$ QUARTER			
Day 46 Tue 31 Oct	§3.4 The Chain Rule \& Rules Review ---I can take the derivative of a composition of functions using the chain rule. ---I can write the equation of a tangent line to a function in point-slope form and use the sign of the second derivative to determine if the tangent line is above or below the curve.	Rules Review pp 180-182 \#3*, 14, 29, 41*,43, 65**, 72, 79, 80, 95 (a-d) *Simplify after differentiating **Simplify before differentiating	9	
Day 47 Wed 1 Nov	§3.5 Trigonometric Functions --- I can take the derivatives of $\sin (x), \cos (x), \tan (x), \cot (x), \sec (x), \csc (x)$	$\begin{aligned} & \text { pp 153-154: } \\ & \# 2,3,6,7,10,11,18,19,24, \\ & 36,38,42,45,54,60 \\ & \hline \end{aligned}$	15	
Day 48 Thu 2 Nov	§3.7 Intro to Implicit Differentiation \& §3.6 Chain Rule and Inverse Functions to find derivatives of $\arctan (x)$ and $\arcsin (x)$ and $\ln (x)$ --- I know the derivatives of $\arctan (x)$ and $\arcsin (x)$ and $\ln (x)$	$\begin{aligned} & \text { p 159: } \\ & \# 3,5,7,17,19,21,28,32,41,45 \end{aligned}$	10	
$\begin{aligned} & \text { Day } 49 \\ & \text { Fri } \\ & 3 \text { Nov } \end{aligned}$	§3.6 Chain Rule and Inverse Functions --- I can take the derivatives of $\arctan (x)$ and $\arcsin (x)$ and $\ln (x)$ and composite functions.	$\begin{aligned} & \text { p 159: } \\ & \text { \# 2,6,8,10,22-26,30,31,37,39 } \end{aligned}$	13	
Day 50 Mon 6 Nov	Derivatives with Tables Wrap it Up: Derivative Rules Review	Review Sheet MC Questions \#1-17 Show all work on your own paper!	17	
Day 51 Tue 7 Nov	Wrap it Up: Derivative Rules Review	Review Sheet FRW Questions \#1-12 (Skip \#13-14 for now)	12	
Day 52 Wed 8 Nov	Final Review Derivative Rules Rules for Derivatives of functions: power, exponential, product, quotient, chain, trig, $\arctan (x), \arcsin (x), \ln (x)$. (? logarithm base b)			
Day 53 Thu 9 Nov	TEST Derivative Rules			

