32. The equation of the horizontal asymptote for the graph of $y=\frac{2-e^{\frac{1}{x}}}{2+e^{\frac{1}{x}}}$ is
(A) $y=-1$
(B) $y=-\frac{1}{2}$
(C) $y=\frac{1}{3}$
(D) $y=\frac{1}{2}$
(E) $y=1$
33. Let f be a function which is continuous on $[2,10]$ and whose derivative is given by $f^{\prime}(x)=\frac{\cos x}{\ln (x+1)}$. Which of the following are true about $f(x)$ on the interval $[2,10]$?
I. $f(x)$ is monotonic.
II. $\quad f(x)$ has a relative minimum.
III. $f(x)$ has three points of inflection.
(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III
34. The base of a solid is the region enclosed by the graph of $y=3(x-2)^{2}$ and the coordinate axes. If every cross section perpendicular to the x-axis is a square, then the volume of the solid is
(A) 8.0°
(B) 19.2
(C) 24.0
(D) 25.6
(E) 57.6
35. When $x=\frac{\pi}{4}$, the rate at which $\sin ^{2} x$ is increasing is k times the rate at which x is increasing. What is the value of k ?
(A) $\sqrt{2}$
(B) $\frac{\sqrt{2}}{2}$
(C) 1
(D) $\frac{1}{2}$
(E) -1
36. The expression $\frac{1}{4}(\sqrt{1}+2 \sqrt{5 / 4}+2 \sqrt{2}+2 \sqrt{13 / 4}+\sqrt{5})$ is the trapezoidal approximation for which of the following definite integrals?
(A) $\int_{1}^{3} \sqrt{x} d x$
(B) $\int_{1}^{5} \sqrt{x} d x$
(C) $\int_{0}^{4} \sqrt{x^{2}+1} d x$
(D) $\int_{0}^{2} \sqrt{x^{2}+1} d x$
(E) $\int_{-1}^{2} \sqrt{x^{2}+1} d x$
37. The average value of the function $f(x)=e^{-x} \sin x$ on the closed interval $[1, \pi]$ is
(A) 0.129
(B) 0.145
(C) 0.155
(D) 0.276
(E) 0.310
38. The position of an object attached to a spring is given by $y(t)=\frac{1}{3} \sin (4 t)-\frac{1}{8} \cos (4 t)$ where t is time in seconds. How many times does the acceleration of the object change from negative to positive in the first 5 seconds?
(A) Three
(B) Four
(C) Five
(D) Six
(E) Seven
39. The present price of a new car is $\$ 14,500$. The price of a new car is changing at a rate of $120+180 \sqrt{t}$ dollars per year. How much will a new car cost 5 years from now?
(A) $\$ 15,020$
(B) $\$ 15,300$
(C) $\$ 16,440$
(D) $\$ 18,120$
(E) $\$ 22,600$
40. The amount of a radioactive substance decays according to the equation $\frac{d y}{d t}=k y$ where k is a constant and time, t, is measured in days. If half of the amount present will decay in 20 days, what is the value of k ?
(A) -13.066
(B) -6.021
(C) -0.693
(D) -0.035
(E) -0.015
41. Let f be the function given by $f(x)=x^{2} \ln x$. For what value of x is the slope of the line tangent to the graph of f at $(x, f(x))$ equal to 2 ?
(A) 1.305
(B) 1.548
(C) 2.000
(D) 2.548
(E) 4.773
42. The mass $m(t)$, in grams, of a tumor t weeks after it begins growing is given by $m(t)=\frac{t e^{t}}{80}$. What is the average rate of change, in grams per week, during the fifth week of growth?
(A) 2.730
(B) 3.412
(C) 6.189
(D) 6.546
(E) 11.131
43. Let $f(x)$ be a differentiable function defined for all real numbers. The table below gives the value of $f(x)$ and its derivative $f^{\prime}(x)$ for several values of x.

x	-3	-2	-1	0	1	2	3
$f(x)$	8	5	0	1	0	5	8
$f^{\prime}(x)$	-6	-4	-2	0	2	4	6

-Which of the following statements are true about $f(x)$?
I. At $x=2$, the function is increasing.
II. There is a relative minimum in the interval $-1 \leq x \leq 1$, but not necessarily at $x=0$.
III. There is a relative maximum in the interval $-1 \leq x \leq 1$.
(A) I only .
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
44. A particle moves along the x-axis so that its position at any time $t>0$ is given by $x(t)=t^{3}+22 t+3-6 \cos (\pi t)$. For what value of t is the velocity negative?
(A) $t=\frac{1}{2}$
(B) $t=1$
(C) $t=\frac{3}{2}$
(D) $t=2$
(E) The velocity is never negative.
45. The closed interval $[0, \pi]$ is partitioned into n equal subdivisions each of length $\Delta x=\frac{\pi}{n}$ by the numbers $x_{0}, x_{1}, x_{2} \ldots, x_{n-1}, x_{n}$, with $0=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=\pi$.

The $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \cos \left(x_{i}\right) \Delta x$ is
(A) -2
(B) -1
(C) 1
(D) 2
(E) π

