66. The graph of f is shown in the figure on the right.

If $g(x)=\int_{a}^{x} f(t) d t$, for what value of x does $g(x)$ have a maximum?
(A) a
(B) b
(C) c
(D) d
(E) It cannot be determined from the information given.

67. In the triangle shown on the right, if 0 increases at a constant rate of 3 radians per minute, at what rate is x increasing in units per minute when $x=3$ units?
(A) 3
(B) $\frac{15}{4}$
(C) 4
(D) 9
(E) 12

68. (Calc) The velocity, in $\mathrm{ft} / \mathrm{sec}$, of a particle moving along the x-axis is given by the function $v(t)=e^{t}+t e^{t}$. What is the average velocity of the particle from time $t=0$ to time $t=3$?
(A) $20.086 \mathrm{f} / \mathrm{sec}$
(B) $26.447 \mathrm{ff} / \mathrm{sec}$
(C) $32.809 \mathrm{ft} / \mathrm{sec}$
(D) $40.671 \mathrm{fV} / \mathrm{sec}$
(E) $79.342 \mathrm{f} / \mathrm{sec}$
69.

The graph of $y=f(x)$ is shown in the tugure above. It A_{1} and A_{2} are positive mumbers that represent the areas of the shaded regions, then in terms of A_{1} and $A_{2}, \int_{-4}^{4} f(x) d x-2 \int_{-1}^{4} f(x) d x=$
(A) A_{1}
(B) $A_{1}-A_{2}$
(C) $2 A_{1}-A_{2}$
(D) $A_{1}+A_{2}$
(E) $A_{1}+2 A_{2}$
71. $\lim _{h \rightarrow 0} \frac{\ln (e+h)-1}{h}$ is
(A) $f^{\prime}(e)$, where $f(x)=\ln x$
(B) $f^{\prime}(e)$, where $f(x)=\frac{\ln x}{x}$
(C) $f^{\prime}(1)$, where $f(x)=\ln x$
(D) $f^{\prime}(1)$, where $f(x)=\ln (x+e)$
(B) $f^{\prime}(0)$, where $f(x)=\ln x$
72. Let f be a continuous function on the closed interval $[-3,6]$. If $f(-3)=-1$ and $f(6)=3$, then the Intermediate Value Theorem guarantees that
(A) $f(0)=0$
(B) $f^{\prime}(c)=\frac{4}{9}$ for at least one c between -3 and 6
(C) $-1 \leq f(x) \leq 3$ for all x between -3 and 6
(D) $f(c)=1$ for at least one c between -3 and 6
(B) $f(c)=0$ for at least one c between -1 and 3
73. (Cale) Let g be the function given by $g(x)=\int_{0}^{x} \sin \left(r^{2}\right) d t$ for $-1 \leq x \leq 3$. On which of the following
intervals is g decreasing?
(A) $-1 \leq x \leq 0$
(B) $0 \leq x \leq 1.772$
(D) $1.772 \leq x \leq 2.507$
(E) $2.802 \leq x \leq 3$
(C) $1.253 \leq x \leq 2.171$
74. If $f^{\prime \prime}(x)=x(x+1)(x-2)^{2}$, then the graph of f has inflection points when $x=$
(A) -1 only
(B) 2 only
(C) -1 and 0 only
(D) -1 and 2 only
(B) $-1,0$, and 2 only
75. (Calc) \wedge particle moves along the x-axis so that any time $t>0$, its acceleration is given by $a(t)=\ln \left(1+2^{t}\right)$. If the velocity of the particle is 2 at time $t=1$, then the velocity of the particle
at time $t=2$ is
(A) 0.462
(B) 1.609
(C) 2.555
(D) 2.886
(E) 3.346

1. If $y=\left(2 x^{2}+1\right)^{4}$, then $\frac{d y}{d x}=$
(A) $16 x^{3}$
(B) $4\left(2 x^{2}+1\right)^{3}$
(C) $4 x\left(2 x^{2}+1\right)^{3}$
(D) $16\left(2 x^{2}+1\right)^{3}$
(E) $16 x\left(2 x^{2}+1\right)^{3}$
2. $\int x \sqrt{x^{2}+1} d x=$
(A) $\frac{x}{\sqrt{x^{2}+1}}+C$
(B) $\frac{3}{4}\left(x^{2}+1\right)^{\frac{3}{2}}+C$
(C) $\frac{1}{3}\left(x^{2}+1\right)^{\frac{2}{2}}+C$
(D) $\frac{2}{3}\left(x^{2}+1\right)^{\frac{2}{2}}+C$
(E) $\frac{1}{3} x^{2}\left(x^{2}+1\right)^{\frac{3}{2}}+C$
3. If $\frac{d y}{d x}=2 x y$, then $\frac{d^{2} y}{d x^{2}}=$
(A) $2 y$
(B) $2 x+2 y$
(C) $2 x+4 y$
(D) $2 x^{2} y+2 y$
(E) $4 x^{2} y+2 y$
