50. $\frac{d}{d x} \int_{0}^{x} \cos (2 \pi u) d u$ is
(A) 0
(B) $\frac{1}{2 \pi} \sin x$
(C) $\frac{1}{2 \pi} \cos (2 \pi x)$
(D) $\cos (2 \pi x)$
(E) $2 \pi \cos (2 \pi x)$
51. If f is a linear function and $0<a<b$, then $\int_{a}^{b} f^{\prime \prime}(x) d x=$
(A) 0
(B) 1
(C) $\frac{a b}{2}$
(D) $b-a$
(E) $\frac{b^{2}-a^{2}}{2}$
52. What is the minimum value of $f(x)=x \ln x$?
(A) $-e$
(B) -1
(C) $-\frac{1}{e}$
(D) 0
(E) $f(x)$ has no minimum value.
53. At what value of x does the graph of $y=\frac{1}{x^{2}}-\frac{1}{x^{3}}$ have a point of inflection?
(A) 0
(B) 1
(C) 2
(D) 3
(E) At no value of x
54. If $f(x)=\ln \left(x+4+e^{-3 x}\right)$, then $f^{\prime}(0)$ is
(A) $-\frac{2}{5}$
(B) $\frac{1}{5}$
(C) $\frac{1}{4}$
(D) $\frac{2}{5}$
(E) nonexistent
55. $\int_{1}^{e}\left(\frac{x^{2}-1}{x}\right) d x=$
(A) $e-\frac{1}{e}$
(B) $e^{2}-e$
(C) $e^{2}-e+\frac{1}{2}$
(D) $e^{2}-2$
(E) $\frac{e^{2}}{2}-\frac{3}{2}$
56. Let f be the function defined by $f(x)=\left\{\begin{array}{ll}x^{3} & \text { for } x \leq 0 \\ x & \text { for } x>0\end{array}\right.$. Which of the following statements
about f is true?
(A) f is an odd function.
(B) f is discontinuous at $x=0$.
(C) f has a relative maximum.
(D) $f^{\prime}(0)=0$
(E) $f^{\prime}(x)>0$ for $x \neq 0$.
57.

The graph of f^{\prime}, the derivative of f, is shown in the figure above. Which of the following describes all relative extrema of f on the open interval (a, b) ?
(A) One relative maximum and two relative minima
(D) one relative maximum and three relative minima
(B) Two relative maxima and one relative minimum
(E) Three relative maxima and two relative minima
(C) Three relative maxima and one relative minimum

60 . The rate of change of the volume, V, of water in a tank with respect to time, t, is directly proportional to the square root of the volume. Which of the following is a differential equation that describes this relationship?
(A) $V(t)=k \sqrt{t}$
(B) $V(t)=k \sqrt{V}$
(C) $\frac{d V}{d t}=k \sqrt{t}$
(D) $\frac{d V}{d t}=\frac{k}{\sqrt{V}}$
(E) $\frac{d V}{d t}=k \sqrt{V}$
61. Let f be the function defined by $f(x)=x^{3}+x$. If $g(x)=f^{-1}(x)$ and $g(2)=1$, what is the value of $g^{\prime}(2)$?
(A) $\frac{1}{13}$
(B) $\frac{1}{4}$
(C) $\frac{7}{4}$
(D) 4
(E) 13
62. (Calc) A particle moves along the x-axis so that at any time $t \geq 0$, its velocity is given by $v(t)=3+4.1 \cos (0.9 t)$. What is the acceleration of the particle at time $t=4$?
(A) -2.016
(B) -0.677
(C) 1.633
(D) 1.814
(E) 2.978
63. If $\frac{d y}{d x}=2 y^{2}$ and if $y=-1$ when $x=1$, then when $x=2, y=$
(A) $-\frac{2}{3}$
(B) $-\frac{1}{3}$
(C) 0
(D) $\frac{1}{3}$
(E) $\frac{2}{3}$

64 . The top of a 25 -foot ladder is sliding down a vertical wall at a constant rate of 3 feet per minute. When the top of the ladder is 7 feet from the ground, what is the rate of change of the distance between the bottom of the ladder and the wall?
(A) $-\frac{7}{8}$ feet per minute
(B) $-\frac{7}{24}$ feet per minute
(C) $\frac{7}{24}$ feet per minute
(D) $\frac{7}{8}$ feet per minute
(E) $\frac{21}{25}$ foet per minute

