
AP Exam Review MC 3 Google Form MC Entry

	2 x dy			
33. If $y =$	$x^2 e^x$, then $\frac{dy}{dx} =$			
(A) 2 <i>xe^x</i>	(B) x(x	$(C) xe^x$	(x+2) (D) $2x-$	$+e^x$ (E) $2x+e$
35. If $y = \frac{1}{2}$	$\frac{\ln x}{x}$, then $\frac{dy}{dx} =$		25	а.)
(A) $\frac{1}{x}$	(B) $\frac{1}{x^2}$	(C) $\frac{\ln x - 1}{x^2}$	(D) $\frac{1-\ln x}{x^2}$	(E) $\frac{1+\ln x}{x^2}$
$36. \int \frac{x}{\sqrt{3x^2}}$	$dx = \frac{1}{1+5}$			
$(A) \frac{1}{9} \Big(3x^2$	$(+5)^{3/2} + C$	(B) $\frac{1}{4}(3x^2+5)^{\frac{3}{2}}$	+ <i>C</i> (C	$\left(\frac{1}{12}\left(3x^2+5\right)^{\frac{1}{2}}+C\right)$
(D) $\frac{1}{3}(3x^2)$	$(+5)^{\frac{1}{2}} + C$	(E) $\frac{3}{2}(3x^2+5)^{1/2}$	+C	
37. $\lim_{h\to 0} \frac{\tan}{2}$	$\frac{n3(x+h)-\tan(3x)}{h} =$			
(A) 0	(B) $3 \sec^2(3x)$	(C) $\sec^2(3x)$	(D) $3\cot(3x)$	(E) nonexistent
8. What is	the average value of	y for the part of the curve	$y = 3x - x^2$ which is in	the first quadrant?
(A) - 6	(B) – 2	(C) $\frac{3}{2}$	(D) $\frac{9}{4}$	(E) $\frac{9}{2}$
39. If $\int_{1}^{10} f$	$f(x)dx = 4$ and $\int_{10}^{3} \frac{1}{3} dx$	$f(x)dx = 7$, then $\int_1^3 f(x) dx = 7$	(x)dx =	
(A) -3	(B) 0	(C) 3	(D) 10	(E) 11
40.				
		,	1	
		L		
The	sides of the rectangle	x above increase in such	a way that $\frac{dz}{dt} = 1$ and	$\frac{dx}{dt} = 3\frac{dy}{dt}.$
At th	the instant when $x = 4$	and $y=3$, what is the v	value of $\frac{dx}{dt}$?	
(A)	1 3 (B) 1	(C) 2	(D) √5	(E) 5

Which of the following represents the area of the shaded region in the figure above?

(A)
$$\int_{e}^{d} f(y) dy$$

(B) $\int_{a}^{b} (d-f(x)) dx$
(C) $f'(b)-f'(a)$
(D) $(b-a)[f(b)-f(a)]$
(E) $(d-c)[f(b)-f(a)]$

43. If $x^3 + 3xy + 2y^3 = 17$, then in terms of x and y, $\frac{dy}{dx} =$ (A) $-\frac{x^2 + y}{x + 2y^2}$ (B) $-\frac{x^2 + y}{x + y^2}$ (C) $-\frac{x^2 + y}{x + 2y}$ (D) $-\frac{x^2 + y}{2y^2}$ (E) $\frac{-x^2}{1 + 2y^2}$

44.
$$\int \frac{3x^2}{\sqrt{x^3 + 1}} dx =$$

(A) $2\sqrt{x^3 + 1} + C$ (B) $\frac{3}{2}\sqrt{x^3 + 1} + C$ (C) $\sqrt{x^3 + 1} + C$ (D) $\ln\sqrt{x^3 + 1} + C$ (E) $\ln(x^3 + 1) + C$

45. For what value of x does the function $f(x) = (x-2)(x-3)^2$ have a relative maximum? (A) -3 (B) $-\frac{7}{3}$ (C) $-\frac{5}{2}$ (D) $\frac{7}{3}$ (E) $\frac{5}{2}$

47. If $f(x) = \sin\left(\frac{x}{2}\right)$, then there exists a number c in the interval $\frac{\pi}{2} < x < \frac{3\pi}{2}$ that satisfies the conclusion of the Mean Value Theorem. Which of the following could be c? (A) $\frac{2\pi}{2}$ (B) $\frac{3\pi}{2}$ (C) $\frac{5\pi}{2}$ (D) π (E) $\frac{3\pi}{2}$

$$\frac{(A)}{3} \frac{(B)}{4} \frac{(C)}{6} \frac{(D)}{6} \frac{(D)}{1} \frac{(E)}{2} \frac{(E)}{2}$$
48. If $f(x) = (x-1)^2 \sin x$, then $f'(0) = 0$

(A)
$$-2$$
 (B) -1 (C) 0 (D) 1 (E) 2

49. The acceleration of a particle moving along the x-axis at time t is given by a(t) = 6t - 2. If the velocity is 25 when t = 3 and the position is 10 when t = 1, then the position x(t) =
(A) 9t² + 1 (B) 3t² - 2t + 4 (C) t³ - t² + 4t + 6 (E) 36t³ - 4t² - 77t + 55

42.