17. An equation of the line tangent to the graph of $y=\cos (2 x)$ at $x=\frac{\pi}{4}$ is
(A) $y-1=-\left(x-\frac{\pi}{4}\right)$
(B) $y-1=-2\left(x-\frac{\pi}{4}\right)$
(C) $y=2\left(x-\frac{\pi}{4}\right)$
(D) $y=-\left(x-\frac{\pi}{4}\right)$
(E) $y=-2\left(x-\frac{\pi}{4}\right)$
18. Let f be a function defined for all real numbers x. If $f^{\prime}(x)=\frac{\left|4-x^{2}\right|}{x-2}$, then f is decreasing on
the interval
(A) $(-\infty, 2)$
(B) $(-\infty, \infty)$
(C) $(-2,4)$
(D) $(-2, \infty)$
(E) $(2, \infty)$
19. Let f be a differentiable function such that $f(3)=2$ and $f^{\prime}(3)=5$. If the tangent line to the graph of f at $x=3$ is used to find an approximation to a zero of f, that approximation is
(A) 0.4
(B) 0.5
(C) 2.6
(D) 3.4
(E) 5.5
20. $\int_{0}^{\pi / 3} \sin (3 x) d x=$
(A) -2
(B) $-\frac{2}{3}$
(C) 0
(D) $\frac{2}{3}$
(E) 2
21. (Calc)

x	0	0.5	1.0	1.5	2.0
$f(x)$	3	3	5	8	13

A table of values for a continuous function f is shown above. If four equal subintervals of $[0,2]$ are used, which of the following is the trapezoidal approximation of $\int_{0}^{2} f(x) d x$?
(A) 8
(B) 12
(C) 16
(D) 24
(E) 32
23. $\int_{1}^{2} \frac{1}{x^{3}} d x=$
(A) $-\frac{7}{8}$
(B) $-\frac{3}{4}$
(C) $\frac{15}{64}$
(D) $\frac{3}{8}$
(E) $\frac{15}{16}$
24. If $y=\frac{3}{4+x^{2}}$, then $\frac{d y}{d x}=$
(A) $\frac{-6 x}{\left(4+x^{2}\right)^{2}}$
(B) $\frac{3 x}{\left(4+x^{2}\right)^{2}}$
(C) $\frac{6 x}{\left(4+x^{2}\right)^{2}}$
(D) $\frac{-3}{\left(4+x^{2}\right)^{2}}$
(E) $\frac{3}{2 x}$
25. The function defined by $f(x)=x^{3}-3 x^{2}$ for all real numbers x has a relative maximum at $x=$?
(A) -2
(B) 0
(C) 1
(D) 2
(E) 4
26. $\frac{d}{d x}\left(\frac{1}{x^{3}}-\frac{1}{x}+x^{2}\right)$ at $x=-1$ is
(A) -6
(B) -4
(C) 0
(D) 2
(E) 6
28. If $x^{2}+x y+y^{3}=0$, then, in terms of x and $y, \frac{d y}{d x}=$
(A) $-\frac{2 x+y}{x+3 y^{2}}$
(B) $-\frac{x+3 y^{2}}{2 x+y}$
(C) $-\frac{2 x}{1+3 y^{2}}$
(D) $-\frac{2 x}{x+3 y^{2}}$
(E) $-\frac{2 x+y}{x+3 y^{2}-1}$
29. $\int_{1}^{2} \frac{x^{2}-1}{x+1} d x=$
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) $\frac{5}{2}$
(E) $\ln 3$
30. If $\lim _{x \rightarrow a} f(x)=L$, where L is a real number, which of the following must be true?
(A) $f^{\prime}(a)$ exists
(B) $f(x)$ is continuous at $x=a$
(C) $f(x)$ is defined at $x=a$.
(D) $f(a)=L$
(E) None of the above
31. $\frac{d}{d x} \int_{2}^{x} \sqrt{1+t^{2}} d t=$
(A) $\frac{x}{\sqrt{1+x^{2}}}$
(B) $\sqrt{1+x^{2}}-5$
(C) $\sqrt{1+x^{2}}$
(D) $\frac{x}{\sqrt{1+x^{2}}}-\frac{1}{\sqrt{5}}$
(E) $\frac{1}{2 \sqrt{1+x^{2}}}-\frac{1}{2 \sqrt{5}}$
32. The average value of $f(x)=x^{2} \sqrt{x^{3}+1}$ on the closed interval $[0,2]$ is
(A) $\frac{26}{9}$
(B) $\frac{13}{3}$
(C) $\frac{26}{3}$
(D) 13
(E) 26

