- 17. An equation of the line tangent to the graph of $y = \cos(2x)$ at $x = \frac{\pi}{4}$ is
- (A) $y-1 = -\left(x \frac{\pi}{4}\right)$

(B) $y-1=-2\left(x-\frac{\pi}{4}\right)$

(C) $y = 2\left(x - \frac{\pi}{A}\right)$

(D) $y = -\left(x - \frac{\pi}{4}\right)$

- (E) $y = -2\left(x \frac{\pi}{A}\right)$
- 18. Let f be a function defined for all real numbers x. If $f'(x) = \frac{|4-x^2|}{x-2}$, then f is decreasing on
- the interval $(A) \left(-\infty, 2\right)$
- (B) $\left(-\infty,\infty\right)$ (C) $\left(-2,4\right)$
- (D) (-2, ∞)
- (E) (2, ∞)
- 19. Let f be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line to the graph of f at x=3 is used to find an approximation to a zero of f, that approximation is (E) 5.5(D) 3.4 (C) 2.6(B) 0.5(A) 0.4
- 21. $\int_{0}^{\pi/3} \sin(3x) dx =$
- (A) 2
- (B) $-\frac{2}{3}$
- (C)0

- (D) $\frac{2}{3}$
- (E) 2

22. (Cale)

x	0	0.5	1.0	1.5	2.0
f(x)	3	3	5	8	13

A table of values for a continuous function f is shown above. If four equal subintervals of [0, 2]are used, which of the following is the trapezoidal approximation of $\int_{0}^{x} f(x) dx$?

- (A) 8
- (B) 12
- (C) 16

- (D) 24
- (E) 32

- 23. $\int_{1}^{2} \frac{1}{x^3} dx =$
- (A) $-\frac{7}{8}$
- (B) $-\frac{3}{4}$
- (D) $\frac{3}{8}$
- (E) $\frac{15}{16}$

24. If
$$y = \frac{3}{4 + x^2}$$
, then $\frac{dy}{dx} = \frac{3}{4 + x^2}$

(A)
$$\frac{-6x}{(4+x^2)^2}$$
 (B) $\frac{3x}{(4+x^2)^2}$

(B)
$$\frac{3x}{\left(4+x^2\right)^2}$$

(C)
$$\frac{6x}{\left(4+x^2\right)^2}$$

(D)
$$\frac{-3}{(4+x^2)^2}$$

(E)
$$\frac{3}{2x}$$

25. The function defined by $f(x) = x^3 - 3x^2$ for all real numbers x has a relative maximum at x = 7

$$(A) - 2$$

26.
$$\frac{d}{dx} \left(\frac{1}{x^3} - \frac{1}{x} + x^2 \right)$$
 at $x = -1$ is

$$(A) - 6$$

(B)
$$-4$$

28. If $x^2 + xy + y^3 = 0$, then, in terms of x and y, $\frac{dy}{dx} =$

$$(A) - \frac{2x + y}{x + 3y^2}$$

$$(B) - \frac{x+3y^2}{2x+y}$$

$$(C) - \frac{2x}{1+3y^2}$$

$$(D) - \frac{2x}{x+3y^2}$$

(A)
$$-\frac{2x+y}{x+3y^2}$$
 (B) $-\frac{x+3y^2}{2x+y}$ (C) $-\frac{2x}{1+3y^2}$ (D) $-\frac{2x}{x+3y^2}$ (E) $-\frac{2x+y}{x+3y^2-1}$

29.
$$\int_{1}^{2} \frac{x^2 - 1}{x + 1} dx =$$

(A)
$$\frac{1}{2}$$

(D)
$$\frac{5}{2}$$

30. If $\lim_{x\to a} f(x) = L$, where L is a real number, which of the following must be true?

(A)
$$f'(a)$$
 exists

(B)
$$f(x)$$
 is continuous at $x = a$.

(C)
$$f(x)$$
 is defined at $x = a$.

(D)
$$f(a) = L$$

$$31. \frac{d}{dx} \int_2^x \sqrt{1+t^2} \, dt =$$

(A)
$$\frac{x}{\sqrt{1+x^2}}$$

(B)
$$\sqrt{1+x^2} - 5$$

(C)
$$\sqrt{1+x^2}$$

(D)
$$\frac{x}{\sqrt{1+x^2}} - \frac{1}{\sqrt{5}}$$

(A)
$$\frac{dx^{3/2}}{\sqrt{1+x^2}}$$
 (B) $\sqrt{1+x^2} - 5$ (C) $\sqrt{1+x^2}$ (D) $\frac{x}{\sqrt{1+x^2}} - \frac{1}{\sqrt{5}}$ (E) $\frac{1}{2\sqrt{1+x^2}} - \frac{1}{2\sqrt{5}}$

32. The average value of $f(x) = x^2 \sqrt{x^3 + 1}$ on the closed interval [0, 2] is

(A)
$$\frac{26}{9}$$

(B)
$$\frac{13}{3}$$

(C)
$$\frac{26}{3}$$