NON-CALCULATOR (13 questions)

2. What is the	(B) 0	(C) $-\frac{10}{3}$	(D) - 5	(E) -10
		3	2009	
	= 10, then when $x = 2$,	10.5	3	m 7
(A) $-\frac{7}{2}$	(B) -2	(C) $\frac{2}{7}$	(D) $\frac{3}{2}$	(E) $\frac{7}{2}$
			at time t is given by	$y x(t) = t^2 - 6t + 5$. For
what value	of t is the velocity o	I the particle zero:		(TT) (
	(B) 2	(C) 3	(D) 4	(E) 5
(A) 1 5. The graph the	(B) 2 of a twice-differential following is true?	(C) 3		
 (A) 1 5. The graph the (A) f(1) < J 	(B) 2 of a twice-differential	(C) 3	vn in the figure belo	
(A) 1 5. The graph the (A) $f(1) < f(1) < f$	(B) 2 of a twice-differential following is true? f'(1) < f''(1)	(C) 3		

(E) $f''(1) < f'(1) < f(1)$	(E) f"(1) < f'(1) <	f(1)
-----------------------------	----------	-------------	------

7. An equation of the line tangent to the graph of $y = x + \cos x$ at the point (0, 1) is (A) y = 2x+1 (B) y = x+1 (C) y = x (D) y = x-1 (E) y = 0

8. What is the instantaneous rate of change at x = 2 of the function f given by $f(x) = \frac{x^2 - 2}{x - 1}$? (A) -2 (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) 2 (E) 6

9. If $f(x) = \tan x$	$n(2x)$, then $f'\left(\frac{\pi}{6}\right)$	=		
(A) √3	(B) 2√3	(C) 4	(D) 4√3	(E) 8
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 8 40 20		
The function table above. of $\int_{2}^{8} f(x) dx$	Using the subinter	n the closed interval [rvals [2, 5], [5, 7], and	2, 8] and has values the i [7, 8], what is the trap	t are given in the ezoidal approximation
A) 110	(B) 130	(C) 160	(D) 190	(E) 210
I. f is II. f is f	e function given by continuous at $x = 0$ differentiable at $x =$ s an absolute minin). = 0.	f the following statement	ats about f are true?
A) I only	(B) II only	(C) III only	(D) I and III only	(E) II and III only
(A) f has a relative (B) f has a relative (C) f has a relative (D) f has a relative	ive maximum at $x =$ ive minimum at $x =$ ive minimum at $x =$ ive maximum at $x =$		imum at $x=2$.	
14. If $f(x) = x$	$x\sqrt{2x-3}$, then $f'(x)$ (B) $\frac{x}{\sqrt{2x-3}}$;)=	$\frac{-x+3}{\sqrt{2x-3}}$ (D) $\frac{-x+3}{\sqrt{2x-3}}$	$(E) \frac{5x-6}{2\sqrt{2x-3}}$
15. If $\int_{a}^{b} f(x) dx$ (A) $a + 2b + 5$	$dx = a + 2b, \text{ then } \int_{a}^{b}$ (B) $5b - 5d$		a (D) 7 <i>b</i> -5 <i>a</i>	(E) 7 <i>b</i> -6 <i>a</i>
16. $\frac{d}{dx} \Big[\cos^2 \Big(x + \frac{d}{dx} \Big] \Big]$ (A) $6x^2 \sin \Big(x^3 + \frac{d}{dx} \Big]$ (D) $-6x^2 \sin \Big(x + \frac{d}{dx} \Big]$	$)\cos(x^3)$	(B) $6x^2 \cos(x^3)$ (E) $-2\sin(x^3)\cos(x^3)$		$\sin^2(x^3)$