2.6 Continuity and Differentiability—Student Notes HH6ed

<u>Definition</u>: A function f(x) is continuous at a number a if

$$\lim_{x \to a} f(x) = f(a)$$

This definition <u>implicitly requires three things</u> to be continuous at x = a:

- f(a) exists (that is, a is in the domain of f(x))
- $\lim_{x \to a} f(x)$ exists (so f(x) must be defined on an open interval that contains a)

There are 3 types of Discontinuity:

- Removable Discontinuity: A limit exists, but there is a hole at the value.
- 2. Non-removable (or Jump) Discontinuity: A limit does not exist at the value.
- Infinite Discontinuity: There is a vertical asymptote at the value. The limit from the left 3. and right is ∞ or $-\infty$

Examples:

1. Where are each of the following functions discontinuous? State the type of discontinuity.

a.
$$f(x) = \frac{x^2 - x - 2}{x - 2} = \frac{(x - 2)(x + 1)}{(x - 2)}$$

f(x) is discontinuous at x=2 where there is

a hole (2,3) x=2 Removable discontinuity x=2 x=2 x=2 x=2 x=2 x=2 x=2 x=2 x=2 x=2

c.
$$f(x) = \begin{cases} \frac{x - x - 2}{x - 2}, & \text{if } x \neq 2\\ 1, & \text{if } x = 2 \end{cases}$$

$$f(x) = \begin{cases} x+1, & x \neq 2 \\ 1, & x=2 \end{cases}$$

f(k) is discontinuos
at x=0. where there -1 1
is a vertical asymptote.
... INANTE DISCONTINUITY.

d.
$$f(x) = [x]$$
 Step function ha

f(x) = [x] step function has jump discontinuity

<u>Definition</u> A function f(x) is differentiable at a if f'(a) exists. It is differentiable on an open **interval** (a, b) [or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)$] if it is differentiable at every number in the interval.

Definition
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

There are 3 common ways for a function to fail to be differentiable at a point

WHEN does a LIMIT EXIST? When LHL = RAL So for Differentiability

LHSlope = RHSlope

a. The graph has a sharp point or cusp.

RAW DERIVATIVE GRAPHS

Example: $f(x) = \begin{cases} x^2 & \text{if } x \le 2 \\ (x-2)^2 & \text{if } x > 2 \end{cases}$

$$f(x) = \begin{cases} x^2 & \text{if } x \le 2\\ (x-2)^2 & \text{if } x > 2 \end{cases}$$

at XIZ LHL for slope is large positive value

RHL for slope is large negative value

LHL #RHL SO F(x) is Not differentiable at

b. The function is **discontinuous**. (break, hole or asymptote)

Example:
$$f(x) = \begin{cases} x^2 & \text{if } x < 2 \\ 5 & \text{if } x = 2 \\ 10 - x^2 & \text{if } x > 2 \end{cases}$$

Example: $f(x) = \begin{cases} x^2 & \text{if } x < 2 \\ 5 & \text{if } x = 2 \\ 10 - x^2 & \text{if } x > 2 \end{cases}$ Functions must be continuous order to even consider differentiability.

c. The graph has a vertical tangent line.

Example:
$$f(x) = \sqrt[3]{x-2}$$

Slope of vertical tengent is undefined.

Theorem: If f(x) is differentiable at a point x=c, then f(x) is continuous at c. The converse is false. The converse states: If f(x) is continuous at c, then f is differentiable

* differentiability ⇒ continuity ⇒ limit

Examples:

2. Is the absolute value function differentiable at x = 0? Explain. f(x) = |x| is not differentiable $e(x) = \frac{b}{c} - \frac{b}{c}$

f((0-)=-1 + f'(0+)=+1 b/c there is a sharp point

3. Is $f(x) = x^{\frac{3}{3}}$ differentiable at x = 0? Explain. f(x) is not differentiable at x = 0 b/C f'(0) is undefined since there is a vertical.

4. Is $f(x) = (x-1)^{\frac{2}{3}}$ differentiable at x = 1? Explain.

4. Is $f(x) = (x-1)^{3}$ differentiable at x=1? Explain. S(x) is not differentiable at x=1? Explain. $f'(x) \neq f'(x)$ by there is a sharp Point.

5. Is $f(x) = \frac{x^2 - 5x + 6}{x - 3}$ differentiable at x = 3? $f(x) = \frac{(x - 2)(x - 3)}{(x - 3)} \quad f(x) \text{ is not differentiable } (x = 3)$ $f(x) = \frac{(x - 3)}{(x - 3)} \quad f(x) \text{ is discontinuous; there is a hole } (3, 1).$

6. Refer to the figure at the right. Complete the following table indicating at which values on the open interval (-6, 6), the given function, f, fails to be continuous and/or differentiable.

			1	
Domain value	Continuous?	If no, why?	Differentiable?	If no, why
	(yes or no)		(yes or no)	Tilion
1. X=-4	M	lim f = lim 1		discontinuity
2. X=-1	Yes		No.	Sharp point LHC + RHC.
3. X=Z	No	Infinite Disco Vertical Asym	nt. p. x=2 No	infinite discontinu
4. X=5	YES	,	No	verical targent
		-		- Stope is