2.6 Continuity and Differentiability—Student Notes = HH6ed

Definition: A function f(x) is continuous at a number a if

lim /(x) = f(a)

This dpﬁnition implicitly requires three things to be continuous at x =a:
1. f(a) exists (that is, ais in the domain of f(x))
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W 2. hm f (x) exists (so f(x) must be defined on an open interval that containsa )
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There are 3 types of Discontinuity:
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1. Removable Discontinuity: A limit exists, but there is a hole at the value.
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2. Non-removable (or Jump) Discontinuity : A limit does not exist at the value.

3. Infinite Discontinuity: There is a vertical asymptote at the value. The limit from the left

and right is c© or —oo

Examples:
1. Where are each of the following functions discontinuous? State the type of discontinuity.
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Definition A function f (x) is differentiable at a if f'(a) exists. It is differentiable on an open

interval (a, b) [or (a, oo) or (—oo,a) or (—o0,) ] if it is differentiable at every number in the interval.
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There are 3 common ways for a function to fail to be differentiable at a point LH—S\OQCQ — Q H.Sl\ m
a. The graph has a sharp point or cusp. 4y s 0«, MOST o "
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b. The function is discontinuous. (break hole or asymptote)
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c. The graph has a vertical tangent line.

Example: f(x)= Jx-2
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Examples:

y= x|
2. Is the absolute value function differentiable at x =0? Explain. ;&)
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3. Is f(x)=x’ differentiable at x=0? Explain.
£ &SW&&W#‘OC =0 lolC caJ:
] mde&‘, e thrext S oeverh
£7(a) ¢ + it~ wdeﬁnedsupe/ v z,
4. 1 fx)=(x- ) differentiable at x = 17 Explam
S0¢) 8 k- A fferertobuad X=l
P(ﬂ £ L Hasmesliy At
5x X —5%+6 &
5. Is f(x)= d1fferent1able at x=3? e
(S £&) IS not differenhaole @

OC&)/< Cg, We S & discomhiveus;Here Gc«hé(,ejﬁ(ﬁ 1)

6. Refer to the ﬁgure at the nght Complete the following table mdlcatlng at which values on the
open interval (-6, 6), the given function, f; fails to be continuous and/or differentiable.
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