HH6ed

2.4 Interpretations of the Derivative—Student Notes

An Alternative Notation for the Derivative and Interpreting its Meaning

Given that y = f(x), the derivative can be written as f'(x) or $\frac{dy}{dx}$.

The second notation was introduced by Wilhelm Gottfried Leibniz, a German mathematician. The letter d stands for "small difference in . . ." so literally the notation $\frac{dy}{dx}$ can be thought of as

Small difference in y-values Small difference in x-values

We say "the derivative of y with respect to x."

LIMIT DEGINITION! $\frac{dy}{dx} = \lim_{x \to \infty} \frac{f(x+h) - f(x)}{h}$

Example 1: Use the definition of derivative to find a formula for $\frac{dy}{dx}$ algebraically given $f(x) = x^2 - x$.

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\left[(x+h)^2 - (x+h) \right] - \left[x^2 - x \right]}{h}$$

$$= \lim_{h \to 0} \frac{\left(x^2 + 2xh + h^2 - x - h \right) - \left(x^2 - x \right)}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 - h}{h}$$

$$= \lim_{h \to 0} \left(2x + h - 1 \right)$$

 $f(x)=x^2-x$ f'(x) = 2x - 1

1

If we want to indicate that you should find the derivative at x = 2, you write f'(2) or $\frac{dy}{dx} = 2(2) - 1 = 3$

Example 2: Suppose s = f(t) gives the distance, in meters, of a body from a fixed point as a function of 5(t) describes position. 5'(t) describes velocity. 5"(t) describes acceleration. time t, in seconds.

- a. Describe the following in real-world terms: ds | t=2 at time t=2 seconds, the body is moving at a velocity of ds meters
- b. What are the units associated with this quantity? Msec.
- c. What is the common term for $\frac{ds}{dt}$? instantaneous velocity.
- d. What is the real-world meaning of f'(2) = 10? Use units in your answer.

Interpret Within context !!!

The position of the

object from the fixed point is increasing 10 m/sec at time t= 2 seconds.

Example 3: The cost, C, in dollars, of building a house A ft² in area is given by the function C = f(A).

- a. What is the real world meaning of f(2000) = 195,000? Use units in your answer. To build a 2000 ft house will cost \$195,000.
- b. What is in the independent variable? Dependent variable?

A-area of house C- asst of house (in squire feet) (in \$5)

c. What is the sign of $f^{3}(A)$? Why?

because as the area increases the cost increases f'(A) 70

d. Rewrite $f^{I}(A)$ in Leibniz's notation.

$$f'(A) = \frac{dC}{dA}$$

- e. What are the units of $f^{3}(2000)$? dollars per squareft: ft2
- f. What is the real world meaning of $f^{3}(2000) = 150$?

For an aread 2000 square feet, the cost to build is increasing at a rate of \$150/54.54.

Analyze the graph of $y = -x^2$, using the first and second derivative graphs.

Graph of f(x)	Graph of f'(x)	The value of the slope of tangent line	Graph of f "(x)	Observations
$y = f(x) = -x^{2}$ $for x < 0 f is$ $increasing$ $for x > 0 f is$ $decreasing$ $fis always$ $concave down$	of $x < 0$ for $x < 0$ for $x < 0$ for $x > 0$ for x	f'(-2) = 4 f'(-1) = 2 f'(0) = 0 f'(1) = -2 f'(2) = -4 $f^{2}(x)$ is always decreasing	$\int_{x}^{y} \int_{x}^{y} (x) < 0 \text{ for all } x.$	On the same interval: • f(x) is concave down • f'(x) is decreasing • f''(x) < 0

 $f(x) = -x^2$

f'(x) = -2x

f"(x)=-2

2

DRAW IST DEREVATIVE

Match the graph of each function below 1 - 6, with the graph of its second derivative A - F.

Determine which of the functions graphed below is

- a) increasing at an increasing rate.
- b) increasing at a decreasing rate.
- c) decreasing at an increasing rate or
- d) decreasing at a decreasing rate.

Explain why you have chosen each.

