Multiple Choice

Identify the choice that best completes the statement or answers the question.

NON-CALCULATOR: # 1, 2, 6, 8 & CALCULATOR ACTIVE: # 3, 4, 5, 7, 9, 10, 11

NC¹. The area of the region enclosed by the graph of $y = x^2 + 1$ and the line y = 5 is: a. $\frac{14}{3}$ b. $\frac{16}{3}$ c. $\frac{28}{3}$ d. $\frac{32}{3}$ e. 8π

Nc. What is the area of the region between the graphs of $y = x^2$ and y = -x from x = 0 to x = 2?

- a. $\frac{2}{3}$ b. $\frac{8}{3}$ c. 4 d. $\frac{14}{3}$ e. $\frac{16}{3}$

2. Let R be the region enclosed by the graph of $y = 1 + \ln(\cos^4 x)$ the x-axis, the lines $x = -\frac{2}{3}$ and $x = \frac{2}{3}$. The closest integer approximation of the area of R is:

- b. 1 c. 2 d. 3 c. 4

4. What is the area of the region in the first quadrant enclosed by the graphs of $y = \cos x$, y = x and the y-axis?

- b. 0.385 \ c. 0.400 \ d. 0.600
- e. 0.947

5. If $0 \le k < \frac{\pi}{2}$ and the area under the curve $y = \cos x$ from x = k to $x = \frac{\pi}{2}$ is 0.1, then $k = \underline{\hspace{1cm}}$

- . a. 1.471
- b. 1.414
- c. 1.277 d. 1.120 c. 0.436

6. If the region enclosed by the y-axis, the line y=2, and the curve $y=\sqrt{x}$ is revolved about the NC y-axis, the volume of the solid generated is:

- - $\frac{32\pi}{5}$ b. $\frac{16\pi}{3}$ c. $\frac{16\pi}{5}$ d. $\frac{8\pi}{3}$ e. π

7. The base of a solid S is the region enclosed by the graph of $y = \sqrt{\ln x}$, the line x = e, and the x-axis. If the cross sections of S perpendicular to the x-axis are squares, then the volume of S is:

- b. $\frac{2}{3}$ (c. 1 (d. 2 e. $\frac{1}{3}(e^3-1)$

8. The base of a solid is the region in the first quadrant enclosed by the graph of $y = 2 - x^2$ and the coordinate axes. If every cross section of the solid perpendicular to the y-axis is a square, the volume of the solid is given by:

- a. $\pi \int_{0}^{2} (2-y)^{2} dy$ b. $\int_{0}^{2} (2-y) dy$ c. $\pi \int_{0}^{\sqrt{2}} (2-x^{2})^{2} dx$ d. $\int_{0}^{\sqrt{2}} (2-x^{2})^{2} dx$ e. $\int_{0}^{\sqrt{2}} (2-x^{2}) dx$

9. The region bounded by the graph of $y = 2x - x^2$ and the x-axis is the base of a solid. For this solid, each cross section perpendicular to the x-axis is an equilateral triangle. What is the volume of the solid?

- a. 1.333

- b. 1.067 c. 0.577 d. 0.462
- e. 0.267

The base of a solid is a region in the first quadrant C bounded by the x-axis, the y-axis, and the line x + 2y = 8, as shown in the figure at the right. If cross

sections of the solid perpendicular to the x-axis are semi-circles, what is the volume of the solid?

- 12,566
- b. 14.661
- c. 16.755
- d. 67.021
- e. 134.041

11. The base of a solid is the region in the first quadrant bounded by the y-axis, the graph of $y = \tan^{-1} x$, the horizontal line y = 3, and the vertical line x = 1. For this solid, each cross section perpendicular to the x-axis is a square. What is the volume of the solid?

- a. 2.561
- b. 6.612
- c. 8.046
- d. 8.755

FRQ - NON-CALCULATOR

Let R be the region in the first quadrant bounded by the graph of $y = 2\sqrt{x}$, the horizontal line y = 6, and the y-axis, as shown in the figure above.

- (a) Find the area of R. A=18

- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 7.
- (c) Region R is the base of a solid. For each y, where 0 ≤ y ≤ 6, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid. 366 y2dy

AVERAGE & INSTANTANEOUS RATES OF CHANGE (5MC 125RQ

Multiple Choice

identify the choice that best completes the statement or answers the question.

NON-CALCULATOR

1. What is the instantaneous rate of change at x=2 of the function f given by $f(x)=\frac{x^2-2}{x-1}$?

NC

- (A) -2

- (D) 2
- (E) 6

CALCULATOR

- C 2. Let f be a function given by $f(x) = 3e^{2x}$ and let g be the function given by $g(x) = 6x^3$. At what value of x do the graphs of f and g have parallel tangent lines?
 - (A) -0.701

- (B) -0.567 (C) -0.391 (D) -0.302 (E) -0.258

(A) 0.168	(B) 0.276	(C) 0.318	(D) 0.342	(E) 0.5S1
5. Let $f(x) = \sqrt{x}$. If the rate of change	e of f at $x = c$ is twice	e its rate of change a	t x = 1, then $c =$
(A) 1/4	(B) 1	(C) 4	(D) 1/2	(E) $\frac{1}{2\sqrt{2}}$
FRQ - CALCULATO	ACTIVE			
	he rate of change of the	he number of mosqui	toes on Tropical Islan	nd at time t days is
modeled by $R(t)$ time $t = 0$.	$= 5\sqrt{t}\cos\left(\frac{t}{s}\right)$ mosqu	itoes per day. There	are 1000 mosquitoes	on Tropical Island at
(a) Show that	t the number of mosq	ultoes is increasing at	time $t = 6$.	
	is the number of mosquit creasing at a decreasing r	네가 있다면 어느 맛이 되었다면 어디에 되었다면 살길	전에 있는 경기를 받는 것이 없는 그리고 있다. 그리고 있다면 보다 보다 보다 보다 보다 보다 보다 보다 되었다. 그리고 있다면 보다 보다 보다 보다 보다 되었다. 그리고 있다면 보다 보다 보다 보다 보다 되었다. 그리고 있다면 보다 보다 보다 보다 되었다. 그리고 있다면 보다 보다 보다 되었다. 그리고 있다면 보다 보다 되었다. 그리고 있다면 보다 보다 되었다면 보다 보다 되었다면 보니 되었다면 보다 되었다면 보니 되었	mber of
	ne model, how many mos the nearest whole numb		and at time $t = 31$? Ro	und
	whole number, what is to yels that leads to your con		nosquitoes for $0 \le t \le$	317
a) R(6) =	4.438 >0			
11 101/11	1913 < 8	: Mosquitos	increase at	decreasing rate.
c) 1000	+ 531 RHd	t = 964.33	s :- 964	masquitos at t=3
1) 014	t-n at t	=0,2,517,	7.57	
121+	170 on	te (0, 2,51	1) (7.57,31	1 + - +
R1.	t) LO m	t 6 (2,5T	, η.5π)	
MAX	occurs e	t=2.517 a	nd t=31	
				quitos at t=2.511
2. P	LAX 1039	mosquitas @	七二2・5千	

3. Let f be the function defined by $f(x) = x + \ln x$. What is the value of c for which the C Instantaneous rate of change of f at x = c is the same as the average rate of change of

(C) 2.164

4. Let f be a function given by $f(x) = 2e^{4x^2}$. For what value of x is the slope of the line tangent to

(B) 1.244

C the graph of f at (x, f(x)) equal to 3?

(D) 2.342

(E) 2.452

. f over [1, 4]?

(A) 0.456

KEY

(seconds)	0	10	40	60
B(t) (meters)	100	136	9	49
ν(t) (meters per second)	2,0	2.3	2.5	4.6

Ben rides a unicycle back and forth along a straight east-west track. The twice-differentiable function B models Ben's position on the track, measured in meters from the western end of the track, at time t, measured in seconds from the start of the ride. The table above gives values for B(t) and Ben's velocity, v(t), measured in meters per second, at selected times t.

(a) Use the data in the table to approximate Ben's acceleration at time t = 5 seconds, Indicate units of measure.

sec2

(b) Using correct units, interpret the meaning of $\int_0^{c_0} |v(t)| dt$ in the context of this problem. Approximate $\int_0^{c_0} |v(t)| dt$ using a left Riemann sum with the subintervals indicated by the data in the table.

(c) For 40 ≤ 1 ≤ 60, must there be a time 1 when Ben's velocity is 2 meters per second? Justify your answer.

(d) A light is directly above the western end of the track. Ben rides so that at time t, the distance L(t) between Ben and the light satisfies $(L(t))^2 = 12^2 + (B(t))^2$. At what rate is the distance between Ben and the light changing at time t = 40? 2 L(t) L'(t) = 2 B(t) B'(t)

L'(40) = 3 M/SEC

B(60) - B(40)

20

49-9 = 2
20

30

40-9 = 2
20

30

40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2
40-9 = 2-

C

BIG THEOREMS

(IIMC & IFEQ)

AP REVIEW

Multiple Choice

Identify the choice that best completes the statement or answers the question.

The function f is continuous on the closed interval [0, 2] and has values that are given in the table above. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0, 2] if $k = \frac{1}{2}$

equa	tion $f(x)$	$=\frac{1}{2}$	must	have	at	least	iwo	solutions	in	the	interval	[0
a.	0								*			
h .	1											

O O		v			i
$\frac{1}{2}$	f(x)	1	k	2	

c. 1 d. 2

e. 3

2. Let f be a function that is differentiable on the open interval (1, 10). If f(2) = -5, f(5) = 5, and f(9) = -5, which of the following must be true?

I. f has at least 2 zeros.

II. The graph of f has at least one horizontal tangent.

III. For some c, 2 < c < 5, f(c) = 3.

a. None

b. I only

c. I and II only

d. I and III only

e. I, II and III

3.	The function f is continuous for $-2 \le x \le 1$ and differentiable for $-2 \le x \le 1$ and differentiable for $-2 \le x \le 1$.	x<1. If f	-2) =	5 and	<i>f</i> (1) =	4, w	hich of
	a. There exists c, where $-2 < c < 1$, such that $f(c) = 0$. b. There exists c, where $-2 < c < 1$, such that $f'(c) = 0$. c. There exists c, where $-2 < c < 1$, such that $f(c) = 3$. d. There exists c, where $-2 < c < 1$, such that $f'(c) = 3$. e. There exists c, where $-2 \le c \le 1$ such that $f(c) \ge f(x)$ for all x or	n the closed	i inter	rval			
4.	$-2 \le x \le 1$. If f is continuous for $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$, where $a \le x \le b$ and differentiable for $a < x < b$.	hich of the	e foile	owing	g cou	ld be	false?
	 a. f'(c) = f(b) - f(a) / b - a for some c such that a < c < b. b. f'(c) = 0 for come c such that a < c < b. c. f has a minimum value on a ≤ x ≤ b. d. f has a maximum value on a ≤ x ≤ b. 		8				
	c. $\int_a^b f(x) dx$ exists.						
5.	The function f is continuous and differentiable on the closed interval values of f on this interval. Which of the following statements must		table	e abo	v e giv	es se	lected
	 a. The minimum value of f on [0, 4] is 2. b. The maximum value of f on [0, 4] is 4. 	f(x)	0	3	2	3	4
	c. $f(x) > 0$ for $0 < x < 4$ d. $f'(x) < 0$ for $2 < x < 4$ e. There exists c, with $0 < c < 4$, for which $f'(c) = 0$.	13(4)	1	13	1,7	1-	
— 6. C	Let $f(x) = \int_0^x \sin t dt$. At how many points in the closed interrate of change of f equal the average rate of change of f on that		_ π] do	oes th	e inst	tantar	neous
	a. Zero b. One c. Two d. Three e.	Four					
— ^{7.} C	Let f be the function defined by $f(x) = x + \ln x$. What is the value of change of f at $x = c$ is the same as the average rate of change of f over a 0.456 b. 1.244 c. 2.164 d. 2.342 e.	rer [1,4]?	ch the	e inst	antan	eous r	rate of
8 <u>.</u>	a. 0.456 b. 1.244 c. 2.164 d. 2.342 e. If f is the antiderivative of $\frac{x^2}{1+x^5}$ such that $f(1)=0$, then	f(4) =					
9. NC	a0.012 b. 0 c. 0.016 d. 0.376 If $F(x) = \int_0^x \sqrt{t^3 + 1} dt$, then $F'(2) =$	e, 0.6	29				
10.	a3 b2 c. 2 d. 3 e. 18 $\frac{d}{dx} \left(\int_0^{x^2} \sin(t^3) dt \right) =$						
	a. $-\cos(x^6)$ b. $\sin(x^3)$ c. $\sin(x^6)$ d.	$2x\sin(x)$	x3)	e	. 2	x sin	(x^6)

(c) For 0 < t < 60, must there be a time t when v(t) = -5? Justify your answer. Yes v(35) = -10 < -5 < 6 = v(56)(d) For 0 < t < 60, must there be a time t when a(t) = 0? Justify your answer. The guarantees $t \in (35, 50)$ Yes v(0) = v(25) that guarantees $t \in (0, 25)$ such that v(t) = -5DIFFERENTIAL EQUATIONS (7 MC (1 CRQ) APREVIEW

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Population y grows according to the equation $\frac{dy}{dt} = ky$ where k is a constant and t is measured in years. If the population doubles every 10 years, then the value of k is: b. 0.200

2. If $\frac{dy}{dx} = ky$ and k is a nonzero constant, then y could be: a. $2e^{ky}$ b. $2e^{kt}$ c. $e^{kt} + 3$ d. kty + 5 c. $\frac{1}{2}ky^2 + \frac{1}{2}$

3. If $\frac{dy}{dx} = \sin x \cos^2 x$ and if y = 0 when $x = \frac{\pi}{2}$, what is the value of y when x = 0? a. -1 b. $-\frac{1}{3}$ c. 0 d. $\frac{1}{3}$ e. 1

The rate of change of the volume, V, of water in a tank with respect to time, t, is directly proportional to the square root of the volume. Which of the following is a differential equation that describes this relationship?
equation that describes this relationship.

a.
$$V(t) = k\sqrt{t}$$
 b. $V(t) = k\sqrt{V}$ c. $\frac{dV}{dt} = k\sqrt{t}$ d. $\frac{dV}{dt} = \frac{k}{\sqrt{V}}$ e. $\frac{dV}{dt} = k\sqrt{V}$

c.
$$\frac{dV}{dt} = k\sqrt{t}$$

d.
$$\frac{dV}{dt} = \frac{k}{\sqrt{V}}$$

$$\frac{dV}{dt} = k\sqrt{V}$$

5. A curve has slope 2x + 3 at each point (x, y) on the curve. Which of the following is an equation for this curve if it passes through the point (1, 2)?

a.
$$v = 5x - 3$$

b.
$$y = x^2 + 1$$

c.
$$y = x^2 + 3x$$

e.
$$y = x^2 + 3x$$
 d. $y = x^2 + 3x - 2$ e. $y = x^2 + 3x - 3$

e.
$$y = x^2 + 3x - 3$$

The slope field shown at right is for which of the following differential equations?

a.
$$\frac{dy}{dx} = 1 + x$$

b.
$$\frac{dy}{dx} = x^2$$

c.
$$\frac{dy}{dx} = x + y$$

d.
$$\frac{dy}{dx} = \frac{x}{y}$$

e.
$$\frac{dy}{dx} = \ln y$$

7. The slope field shown at right is for which of the following differential equations?

a.
$$\frac{dy}{dx} = \frac{x}{y}$$

b.
$$\frac{dy}{dx} = \frac{x^2}{v^2}$$

$$\frac{dx}{dy} = \frac{x^3}{x^3}$$

$$dx \quad y$$

$$d. \quad \frac{dy}{dx} = \frac{x^2}{x^2}$$

$$\Rightarrow c. \frac{dy}{dx} = \frac{x^3}{y^2}$$

FRQ - NON-CALCULATOR

6. Solutions to the differential equation $\frac{dy}{dx} = xy^3$ also satisfy $\frac{d^2y}{dx^2} = y^3(1 + 3x^2y^2)$. Let y = f(x) be a particular solution to the differential equation $\frac{dy}{dx} = xy^3$ with f(1) = 2.

(a) Write an equation for the line tangent to the graph of y = f(x) at x = 1. $y \in \mathcal{E}(x-1) + 2$

(b) Use the tangent line equation from part (a) to approximate f(1.1). Given that f(x) > 0 for 1 < x < 1.1, is $f(1.1) \approx 2.8$ the approximation for f(1.1) greater than or less than f(1.1)? Explain your reasoning. f(x) > 0 on (1, 1, 1) and

(e) Find the particular solution y = f(x) with initial condition f(1) = 2.

