3. The slope of the line tangent to	o the graph of $y = \ln(x^2)$ at $x = e^2$ is	
(A) $\frac{1}{e^2}$ (B) $\frac{2}{e^2}$	(C) $\frac{4}{e^2}$ (D) $\frac{1}{e^4}$	(E) $\frac{4}{e^4}$
4. If $f(x) = x + \sin x$, then $f'(x)$)=	
(A) $1+\cos x$	(B) $1-\cos x$	(C) cos x
(D) $\sin x - x \cos x$	(E) $\sin x + x \cos x$	
6. If $f(x) = \frac{x-1}{x+1}$ for all $x \neq -1$, then $f'(1) =$	
(A) -1 (B) $-\frac{1}{2}$	(C) 0 (D) $\frac{1}{2}$	(E) 1
8. A particle moves in a straight times $t=1$ and $t=2$?	line with velocity $v(t) = t^2$. How far does	s the particle move between
A company of the second		
(A) $\frac{1}{3}$ (B) $\frac{7}{3}$	(C) 3 (D) 7	(E) 8
9. If $y = \cos^2 3x$, then $\frac{dy}{dx} =$,	
$(A) -6\sin 3x \cos 3x$	(B) -2cos3x	(C) 2 cos 3x
$(D) 6\cos 3x$	(E) $2\sin 3x \cos 3x$	(O) 20033x
	(A	NSWERS ONLY)
Let f be the function defined	by $f(x) = \frac{2x-5}{x^2-4}$.	NSWERS ONLY) Show work)
(a) Find the domain of f.	X = ±2	×1×
(b) Write an equation for ea	ach vertical and each horizontal asymptote	e for the graph of f . $\times = +1$
(d) Write an equation for th	$\frac{2\times^2+10\times-8}{(\times^2-4)^2}$ = line tangent to the graph of f at the point	-4)2 HA
(u) write an equation for the	y = -\frac{1}{2}x + \frac{5}{2}	nt (0, f (0)).
A commendation of the contract		
2(x2-4)	Ex-57(2)	
(×	30-4)3-	Market Market Street Street Street

,		*

7

L 4. ...

AI	tomer Be	view #	on 4/30 4- Monce	1/18 alculat	ter	KEY
10.	The derivati	(B) 0	attains its maximum	value at $x =$ (D) $\frac{4}{3}$	(E)	<u>5</u>
			in the first quadrant to			

12.	If $f(x) = 2x$	$^3 + Ax^2 + Bx - 5$	and if $f(2) = 3$	and $f(-$	(2) = -37,	what is	s the value	of $A+B$?
	(A) -6	(B) -3	(C)	-1	(D)	2		

(C) 0

(D) $-\frac{1}{8}$

(D) 32

(D) 2e-1

(E) 42

(E) 2e

(E) It cannot be determined from the information given.

13.	The acceleration α of a body moving the velocity of the body is 25 at $t=1$ a	in a straight line and if $s(t)$ is the	is given in ter distance of the	ms of time t by body from the	$\alpha = 8 - 6t$. If origin at time
	t, what is $s(4) - s(2)$?	i	*		

(C) 28

14. If $f(x) = x^{\frac{1}{3}} (x-2)^{\frac{2}{3}}$ for all x, then the domain of f' is

(B) e-1

(B) 24

(A) 20

- (C) $\{x \mid 0 \le x \le 2\}$ (A) $\{x \mid x \neq 0\}$ (B) $\{x \mid x > 0\}$ (E) $\{x \mid x \text{ is a real number}\}$ (D) $\{x \mid x \neq 0 \text{ and } x \neq 2\}$
- 15. The area of the region bounded by the lines x = 0, x = 2, and y = 0 and the curve $y = e^{\frac{x}{2}}$ is
- (A) $\frac{e-1}{2}$ 16. The number of bacteria in a culture is growing at a rate of $3000e^{\frac{2t}{5}}$ per unit of time t. At t = 0, the number of bacteria present was 7,500. Find the number present at t = 5.

(C) 2(e-1)

(D) $7,500e^5$ (E) $\frac{15,000}{7}e^7$ (A) $1,200e^2$ (B) $3,000e^2$ (C) $7,500e^2$

- 17. What is the area of the region completely bounded by the curve $y = -x^2 + x + 6$ and the line
 - (A) $\frac{3}{2}$ (B) $\frac{7}{3}$

- 18. $\frac{d}{dx}(\arcsin 2x) =$

- 20. If F and f are continuous functions such that F'(x) = f(x) for all x, then $\int_a^b f(x) dx$ is
 - (A) F'(a)-F'(b)
 - (B) F'(b)-F'(a)
 - (C) F(a)-F(b)
 - F(b) F(a)
 - (E) none of the above

(ANSWERS ONLY)
(SHOW WORSK)

Let R be the region enclosed by the graphs of $y = e^{-x}$, $y = e^{x}$, and $x = \ln 4$.

- (a) Find the area of R by setting up and evaluating a definite integral. $A = \frac{7}{4}$
- Set up, but do not integrate, an integral expression in terms of a single variable for the volume generated when the region R is revolved about the x-axis.

 Set up, but do not integrate, an integral expression in terms of a single variable for the volume generated when the region R is revolved about the y-axis. V= Jx (ln4)2-(lny)2dy

	Homewo	RK T	VE , E	5/1/18		KEV
ABYR	eview	华5-	4100	1 - Cal	culator	,10/

- 21. $\int_0^1 (x+1) e^{x^2+2x} dx =$

- 22. Given the function defined by $f(x) = 3x^5 20x^3$, find all values of x for which the graph of f is concave up.
 - (A) x > 0
 - (B) $-\sqrt{2} < x < 0 \text{ or } x > \sqrt{2}$
 - (C) -2 < x < 0 or x > 2
 - (D) $x > \sqrt{2}$
 - (E) -2 < x < 2
- 25. $\int_0^{\pi/4} \tan^2 x \, dx =$
 - (A) $\frac{\pi}{4} 1$

- (D) $\sqrt{2}-1$
- 26. The radius r of a sphere is increasing at the uniform rate of 0.3 inches per second. At the instant when the surface area S becomes 100π square inches, what is the rate of increase, in cubic inches per second, in the volume V? $\left(S = 4\pi r^2 \text{ and } V = \frac{4}{3}\pi r^3\right)$
 - (A) 10π
- (B) 12π
- (C) 22.5π
- (E) 30 π

- $27. \quad \int_0^{1/2} \frac{2x}{\sqrt{1-x^2}} dx =$
 - (A) $1 \frac{\sqrt{3}}{2}$ (B) $\frac{1}{2} \ln \frac{3}{4}$

- 28. A point moves in a straight line so that its distance at time t from a fixed point of the line is $8t-3t^2$. What is the total distance covered by the point between t=1 and t=2?
 - (A) 1
- (B) $\frac{4}{3}$
- (D) 2

- $30. \quad \int_{1}^{2} \frac{x-4}{x^2} dx =$
- (B) ln 2-2
- ln 2
- (D) 2
- (E) ln 2+2

32.
$$\int \frac{5}{1+x^2} dx =$$

$$(A) \quad \frac{-10x}{\left(1+x^2\right)^2} + C$$

(D)
$$5 \arctan x + C$$

(B)
$$\frac{5}{2x}\ln\left(1+x^2\right)+C$$

(C)
$$5x - \frac{5}{x} + C$$

$$(E) \quad 5\ln\left(1+x^2\right)+C$$

- 34. The average value of \sqrt{x} over the interval $0 \le x \le 2$ is
 - (A) $\frac{1}{3}\sqrt{2}$
- (B) $\frac{1}{2}\sqrt{2}$
- $(C) \quad \frac{2}{3}\sqrt{2}$
- (D) 1
- 35. The region in the first quadrant bounded by the graph of $y = \sec x$, $x = \frac{\pi}{4}$, and the axes is rotated about the x-axis. What is the volume of the solid generated?
 - (A) $\frac{\pi^2}{4}$
- (B) $\pi 1$
- (D) 2π

Let f be the function defined for $\frac{\pi}{6} \le x \le \frac{5\pi}{6}$ by $f(x) = x + \sin^2 x$.

- (a) Find all values of x for which f'(x)=1. $\times \in \{0, \frac{\pi}{2}\} + \pi \times$
- Find the x-coordinates of <u>all</u> minimum points of f. Justify your answer. NONE b/c 1+ 5in 2x20
- Find the x-coordinates of \underline{all} inflection points of f. Justify your answer.

XC [4, 34] +TK

ble f"(x) changes signs

AB Review #6- Yon-Calculator KEY

Andreas and the second state of
$n^n e^{nx}$

- (B) $n!e^{nx}$
- (C) ne^{nx}
- (D) $n^n e^x$
- (E) $n!e^x$

37. If $\frac{dy}{dx} = 4y$ and if y = 4 when x = 0, then y =

- (B) e^{4x}
- (C) $3 + e^{4x}$
- (D) $4 + e^{4x}$
- (E) $2x^2 + 4$

40. If tan(xy) = x, then $\frac{dy}{dx} =$

- (A) $\frac{1-y\tan(xy)\sec(xy)}{x\tan(xy)\sec(xy)}$
- $\frac{\sec^2(xy)-y}{\cos^2(xy)}$
- (C) $\cos^2(xy)$

- (D) $\frac{\cos^2(xy)}{\cos^2(xy)}$
- $\cos^2(xy)-y$

41. Given $f(x) = \begin{cases} x+1 & \text{for } x < 0, \\ \cos \pi x & \text{for } x \ge 0, \end{cases}$ $\int_{-1}^{1} f(x) \, dx =$

- (A) $\frac{1}{2} + \frac{1}{\pi}$ (B) $-\frac{1}{2}$
- (C) $\frac{1}{2} \frac{1}{\pi}$

Calculate the approximate area of the shaded region in the figure by the trapezoidal rule, using divisions at $x = \frac{4}{3}$ and $x = \frac{5}{3}$.

- (B) $\frac{251}{108}$
- (C) $\frac{7}{3}$
- (E) $\frac{77}{27}$

1. If $f(x) = e^{1/x}$, then f'(x) =

$$(A) \quad -\frac{e^{1/x}}{x^2}$$

- (B) $-e^{1/x}$

- (C) $\frac{e^{1/x}}{x}$ (D) $\frac{e^{1/x}}{x^2}$ (E) $\frac{1}{x}e^{(1/x)-1}$

- 3. If $f(x) = x + \frac{1}{x}$, then the set of values for which f increases is
 - (A) $\left(-\infty, -1\right] \cup \left[1, \infty\right)$
- (C) (-∞,∞)

- (D) (0,∞)
- (E) $(-\infty,0)\cup(0,\infty)$
- 4. For what non-negative value of b is the line given by $y = -\frac{1}{3}x + b$ normal to the curve $y = x^3$?
 - (A) 0
- (B) 1

Note: This is the graph of the <u>derivative</u> of f, <u>not</u> the graph of f.

The figure above shows the graph of f', the derivative of a function f. The domain of the function f is the set of all x such that $-3 \le x \le 3$.

a possible graph of f on the axes provided below.

