1. Find the derivative of each function:
a. $y=x \cos x$
b. $f(x)=\frac{x^{3}}{x+1}$
c. $h(x)=8 x-4+2 \ln x$
d. $g(x)=\tan \left(x^{2}+e^{3 x}\right)$
e. $j(x)=\left(x^{4}-3 \sin x\right)^{5}$
f. $y=\ln \left(3 x^{4}+5 x\right)$
2. Write the equation of the line tangent to $h(x)=8 x-4+2 \ln x$ at $x=1$.
3. Let f be the function given by $f(x)=27 x-x^{3}$. On what intervals does f increase?
4. Find all critical points and local extrema for $f(x)=\frac{x}{x^{2}+1}$.
5. Find all critical points and local extrema for $g(x)=x e^{-3 x}$.
6. Find all critical points and inflection points for $f(x)=x^{3}-9 x^{2}+24 x+5$.
7. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2}, & x \neq 2 \\ k, & x=2\end{array}\right.$. What value of k will make f continuous at $x=2$?
8. A car comes to a stop five seconds after the driver applies the brakes. While the brakes are on, the velocities in the table are recorded.

Time (in sec)	0	1	2	3	4	5
Velocity (ft/sec)	88	60	40	25	10	0

a. Use a Left Hand Sum to approximate the distance traveled.
b. Use a Right Hand Sum to approximate the distance traveled.
c. Which of these is an overestimate? Explain.
9. A particle moves along the x-axis. The velocity of the particle at time t is $8 t-t^{2}$. What is the total distance traveled by the particle from time $t=0$ to $t=2$?
10. Find the antiderivative of each function:
a. $\int \csc x \cot x d x$
b. $\int \sin x d x$
c. $\int e^{x} d x$
e. $\int \sec x \tan x d x$
f. $\int \frac{1}{2 x} d x$
g. $\int \frac{12 x^{3}+5}{3 x^{4}+5 x} d x$
h. $\int e^{\sin x} \cos x d x$
11. Evaluate each definite integral:
a. $\int_{3}^{9} e^{x / 3} d x$
b. $\int_{\pi / 3}^{\pi} \sin x$
c. $\int_{1}^{e} \frac{1}{2 x} d x$
12. Pollution is removed from a lake on day t at a rate of $f(t) \mathrm{kg} / \mathrm{day}$.
a. Explain the meaning of the statement $f(12)=500$.
b. If $\int_{5}^{15} f(t) d t=4000$, give the units of the 5 , the 15 , and the 4000 .
c. Give the meaning of $\int_{5}^{15} f(t) d t=4000$.

4. The graph of the function f above consists of three line segments.
(a) Let g be the function given by $g(x)=\int_{-4}^{x} f(t) d t$. For each of $g(-1), g^{\prime}(-1)$, and $g^{\prime \prime}(-1)$, find the value or state that it does not exist.
(b) For the function g defined in part (a), find the x-coordinate of each point of inflection of the graph of g on the open interval $-4<x<3$. Explain your reasoning.
(c) Let h be the function given by $h(x)=\int_{x}^{3} f(t) d t$. Find all values of x in the closed interval $-4 \leq x \leq 3$ for which $h(x)=0$.
(d) For the function h defined in part (c), find all intervals on which h is decreasing. Explain your reasoning.

4. Let f be a function defined on the closed interval $-3 \leq x \leq 4$ with $f(0)=3$. The graph of f^{\prime}, the derivative of f, consists of one line segment and a semicircle, as shown above.
(a) On what intervals, if any, is f increasing? Justify your answer.
(b) Find the x-coordinate of each point of inflection of the graph of f on the open interval $-3<x<4$. Justify your answer.
(c) Find an equation for the line tangent to the graph of f at the point $(0,3)$.
(d) Find $f(-3)$ and $f(4)$. Show the work that leads to your answers.

