1. The function f is continuous for $-2 \leq x \leq 1$ and differentiable for $-2<x<1$. If $f(-2)=-5$ and $f(1)=4$, which of the following statements could be false?
(A) There exists c, where $-2<c<1$, such that $f(c)=0$.
(B) There exists c, where $-2<c<1$, such that $f^{\prime}(c)=0$.
(C) There exists c, where $-2<c<1$, such that $f(c)=3$.
(D) There exists c, where $-2<c<1$, such that $f^{\prime}(c)=3$.
(E) There exists c, where $-2 \leq x \leq 1$, such that $f(c) \geq f(x)$ for all x on the closed interval $-2 \leq x \leq 1$.
2. The function f is continuous for $-2 \leq x \leq 2$ and $f(-2)=f(2)=0$. If there is no c, where $-2<c<2$, for which $f^{\prime}(c)=0$, which of the following statements must be true?
(A) For $-2<k<2, f^{\prime}(k)>0$.
(B) For $-2<k<2, f^{\prime}(k)<0$.
(C) For $-2<k<2, f^{\prime}(k)$ exists.
(D) For $-2<k<2, f^{\prime}(k)$ exists, but f^{\prime} is not continuous.
(E) For some k, where $-2<k<2, f^{\prime}(k)$ does not exist.
3. The base of a solid is the region bounded by the x-axis and the graph of $y=\sqrt{1-x^{2}}$. For the solid, each cross section perpendicular to the x-axis is a square. What is the volume of the solid?
4. If $f(x)=(x+2) \sin (\sqrt{x+2})$, what is the average value of f on the closed interval $[0,6]$?
5. The rate at which motor oil is leaking from an automobile is modeled by the function L defined by $L(t)=1+\sin \left(t^{2}\right)$ for time $t \geq 0 . L(t)$ is measured in liters per hour, and t is measured in hours. How much oil leaks out of the automobile during the first half hour?
6. What is the solution to the differential equation $\frac{d y}{d x}=3 \cos x$ with the initial condition $y\left(\frac{\pi}{2}\right)=5$.
7. The graph of $y=e^{\sin x}-2$ crosses the x-axis at one point in the interval [0,1]. What is the slope of the graph at this point?
8. Suppose $\int_{0}^{2} g(t) d t=5$. Use substitution to calculate the following:
a. $\int_{0}^{4} g\left(\frac{t}{2}\right) d t$
b. $\int_{0}^{1} 5 g(2 t) d t$
c. $\int_{0}^{2} g(2-t) d t$
9. The graph of the function $y^{\prime}=x^{3}+6 x^{2}+7 x-2 \cos x$ is concave down on the interval \qquad .
10. The acceleration of a particle given by $a(t)=-40 t^{3}+18 t+8$. If $v(0)=0$ what is $v(2)$?

t (hours)	0	1	3	6	8
$R(t)$ (liters / hour)	1340	1190	950	740	700

11. Water is pumped into a tank at a rate modeled by $W(t)=2000 e^{-t^{2} / 20}$ liters per hour for $0 \leq t \leq 8$, where t is measured in hours. Water is removed from the tank at a rate modeled by $R(t)$ liters per hour, where R is differentiable and decreasing on $0 \leq t \leq 8$. Selected values of $R(t)$ are shown in the table above. At time $t=0$, there are 50,000 lites of water in the tank.
a. Estimate $R^{\prime}(2)$. Show the work that leads to your answer. Indicate units of measure.
b. Use a left Riemann sum with four subintervals indicated by the table to estimate the total amount of water removed from the tank during the 8 hours. Is this an overestimate or an underestimate of the total amount of water removed? Give a reason for your answer.
c. To the nearest liter, how much water is pumped into the tank on $0 \leq t \leq 8$?
d. Use your answers from part (b) and (c) to find an estimate of the total amount of water in the tank, to the nearest liter, at the end of 8 hours.
