AP Calculus AB Final Exam Review #2

(Calculator Active)

1. The function *f* is continuous for $-2 \le x \le 1$ and differentiable for $-2 \le x \le 1$. If f(-2) = -5 and f(1) = 4, which of the following statements could be false?

- (A) There exists c, where -2 < c < 1, such that f(c) = 0.
- (B) There exists c, where -2 < c < 1, such that f'(c) = 0.
- (C) There exists c, where -2 < c < 1, such that f(c) = 3.
- (D) There exists c, where -2 < c < 1, such that f'(c) = 3.
- (E) There exists c, where $-2 \le x \le 1$, such that $f(c) \ge f(x)$ for all x on the closed interval $-2 \le x \le 1$.

2. The function *f* is continuous for $-2 \le x \le 2$ and f(-2) = f(2) = 0. If there is no *c*, where -2 < c < 2, for which f'(c) = 0, which of the following statements must be true?

- (A) For -2 < k < 2, f'(k) > 0.
- (B) For -2 < k < 2, f'(k) < 0.
- (C) For -2 < k < 2, f'(k) exists.
- (D) For -2 < k < 2, f'(k) exists, but f' is not continuous.
- (E) For some k, where -2 < k < 2, f'(k) does not exist.

3. The base of a solid is the region bounded by the *x*-axis and the graph of $y = \sqrt{1 - x^2}$. For the solid, each cross section perpendicular to the *x*-axis is a square. What is the volume of the solid?

4. If $f(x) = (x+2)\sin(\sqrt{x+2})$, what is the average value of f on the closed interval [0, 6]?

5. The rate at which motor oil is leaking from an automobile is modeled by the function *L* defined by $L(t) = 1 + \sin(t^2)$ for time $t \ge 0$. L(t) is measured in liters per hour, and *t* is measured in hours. How much oil leaks out of the automobile during the first half hour?

6. What is the solution to the differential equation $\frac{dy}{dx} = 3\cos x$ with the initial condition $y\left(\frac{\pi}{2}\right) = 5$.

7. The graph of $y = e^{\sin x} - 2$ crosses the *x*-axis at one point in the interval [0, 1]. What is the slope of the graph at this point?

8. Suppose $\int_0^2 g(t)dt = 5$. Use substitution to calculate the following:

- a. $\int_{0}^{4} g\left(\frac{t}{2}\right) dt$ b. $\int_{0}^{1} 5g(2t) dt$ c. $\int_{0}^{2} g(2-t) dt$
- 9. The graph of the function $y' = x^3 + 6x^2 + 7x 2\cos x$ is concave down on the interval _____
- 10. The acceleration of a particle given by $a(t) = -40t^3 + 18t + 8$. If v(0) = 0 what is v(2)?

t (hours)	0	1	3	6	8
$\frac{R(t)}{(\text{liters / hour})}$	1340	1190	950	740	700

11. Water is pumped into a tank at a rate modeled by $W(t) = 2000e^{-t^2/20}$ liters per hour for $0 \le t \le 8$, where *t* is measured in hours. Water is removed from the tank at a rate modeled by R(t) liters per hour, where *R* is differentiable and decreasing on $0 \le t \le 8$. Selected values of R(t) are shown in the table above. At time t = 0, there are 50,000 lites of water in the tank.

a. Estimate R'(2). Show the work that leads to your answer. Indicate units of measure.

b. Use a left Riemann sum with four subintervals indicated by the table to estimate the total amount of water removed from the tank during the 8 hours. Is this an overestimate or an underestimate of the total amount of water removed? Give a reason for your answer.

c. To the nearest liter, how much water is **<u>pumped into</u>** the tank on $0 \le t \le 8$?

d. Use your answers from part (b) and (c) to find an estimate of the total amount of water in the tank, to the nearest liter, at the end of 8 hours.