2.6 Continuity and Differentiability—Student Notes HH6ed

Definition: A function $f(x)$ is continuous at a number \boldsymbol{a} if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

This definition implicitly requires three things to be continuous at $x=a$:

1. $f(a)$ exists (that is, a is in the domain of $f(x)$)
2. $\lim _{x \rightarrow a} f(x)$ exists (so $f(x)$ must be defined on an open interval that contains a)
3. $\lim _{x \rightarrow a} f(x)=f(a)$

There are 3 types of Discontinuity:

1. Removable Discontinuity: A limit exists, but there is a hole at the value.
2. Non-removable (or Jump) Discontinuity : A limit does not exist at the value.
3. Infinite Discontinuity: There is a vertical asymptote at the value. The limit from the left and right is ∞ or $-\infty$

Examples:

1. Where are each of the following functions discontinuous? State the type of discontinuity.
a. $f(x)=\frac{x^{2}-x-2}{x-2}$
b. $\quad f(x)= \begin{cases}\frac{1}{x^{2}}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}$
c. $f(x)= \begin{cases}\frac{x^{2}-x-2}{x-2}, & \text { if } x \neq 2 \\ 1, & \text { if } x=2\end{cases}$
d. $\quad f(x)=x$

Definition A function $f(x)$ is differentiable at \boldsymbol{a} if $f^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) [or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)]$ if it is differentiable at every number in the interval.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

There are 3 common ways for a function to fail to be differentiable at a point
a. The graph has a sharp point or cusp.

Example: $\quad f(x)=\left\{\begin{array}{l}x^{2} \text { if } x \leq 2 \\ (x-2)^{2} \text { if } x>2\end{array}\right.$

b. The function is discontinuous. (break, hole or asymptote)

Example: $\quad f(x)=\left\{\begin{array}{l}x^{2} \text { if } x<2 \\ 5 \text { if } x=2 \\ 10-x^{2} \text { if } x>2\end{array}\right.$

c. The graph has a vertical tangent line.

Example: $f(x)=\sqrt[3]{x-2}$

Theorem: If $f(x)$ is differentiable at a point $x=c$, then $f(x)$ is continuous at c. The converse is false.

$$
* \text { differentiability } \Rightarrow \text { continuity } \Rightarrow \text { limit }
$$

Examples:
2. Is the absolute value function differentiable at $x=0$? Explain.
3. Is $f(x)=x^{\frac{1}{3}}$ differentiable at $x=0$? Explain.
4. Is $f(x)=(x-1)^{\frac{2}{3}}$ differentiable at $x=1$? Explain.
5. Is $f(x)=\frac{x^{2}-5 x+6}{x-3}$ differentiable at $x=3$?
6. Refer to the figure at the right. Complete the following table indicating at which values on the open interval $(-6,6)$, the given function, f, fails to be continuous and/or differentiable.

Domain value	Continuous? (yes or no)	If no, why?	Differentiable? (yes or no)	If no, why
1.				
2.				
3.				
4.				

