2.5 The Second Derivative Function-Student Notes

A function $f(x)$ is concave upward on an interval I if $f(x)$ lies above all tangent lines to $f(x)$ in I.
A function $f(x)$ is concave downward on an interval I if $f(x)$ lies below all tangent lines to $f(x)$ in I.

HH6ed

The test for concavity involves the second derivative: If $f(x)$ is twice differentiable on an interval I (meaning $f^{\prime \prime}(x)$ exists for all x on the interval I) then
a. If $f^{\prime \prime}(x)>0$ for all x on the interval I, then f is concave upward on I.
b. If $f "(x)<0$ for all x on the interval I, then f is concave downward on I.

Example 1: Use the graph below to answer true or false to each.

a) $f^{\prime \prime}(x)>0$ for $x \in(2,4)$
b) $f^{\prime \prime}(x)<0$ for $x \in(-4,-2)$
c) $f^{\prime \prime}(6)=0$
d) $f^{\prime \prime}(2)>0$
e) f is concave upward on (0,2)

The concavity test can be remembered with the following pictures ... keep in mind these are NOT to be used for justification.

Example: Label each quadrant below with one of the following descriptions:
i) Increasing and Concave Up
ii) Increasing and Concave Down
iii) Decreasing and Concave Up
iv) Decreasing and Concave Down

Points of Inflection

A point of inflection is a point on the graph where the concavity changes.

Example 2: The graph of a function f is given. What can be said about $f^{\prime}(x)$ and f^{\prime} ' (x) for each (i.e., positive/negative/where)?
a)

b)

c)

A point of inflection for f is a point on the graph of f where concavity changes from concave downward to concave upward or from concave upward to concave downward.

Concave downward to concave upward

Concave upward to concave downward

Example 3: Sketch a graph of a function having all of the following properties.
$f(-1)=4, f(0)=2, f(2)=1, f(3)=0$
$f^{\prime}(x) \leq 0$ for $x<3$ and
$f^{\prime}(x) \geq 0$ for $x>3$.
$f^{\prime \prime}(x)<0$ for $0<x<2$ and $f^{\prime \prime}(x) \geq 0$ elsewhere.

