An Alternative Notation for the Derivative and Interpreting its Meaning

Given that y = f(x), the derivative can be written as f'(x) or $\frac{dy}{dx}$.

The second notation was introduced by Wilhelm Gottfried Leibniz, a German mathematician. The letter d stands for "small difference in . . ." so literally the notation $\frac{dy}{dx}$ can be thought of as

Small difference in *y*-values Small difference in *x*-values

We say "the derivative of *y* with respect to *x*."

Example 1: Use the definition of derivative to find a formula for $\frac{dy}{dx}$ algebraically given $f(x) = x^2 - x$.

If we want to indicate that you should find the derivative at x = 2, you write f'(2) or $\frac{dy}{dx}\Big|_{x=2}$

Example 2: Suppose s = f(t) gives the distance, in meters, of a body from a fixed point as a function of time t, in seconds.

- a. Describe the following in real-world terms: $\frac{ds}{dt}\Big|_{t=2}$
- b. What are the units associated with this quantity?
- c. What is the common term for $\frac{ds}{dt}$?
- d. What is the real-world meaning of f'(2) = 10? Use units in your answer.

Example 3: The cost, C, in dollars, of building a house A ft² in area is given by the function C = f(A).

- a. What is the real world meaning of f(2000) = 195,000? Use units in your answer.
- b. What is in the independent variable? Dependent variable?
- c. What is the sign of f'(A)? Why?
- d. Rewrite f'(A) in Leibniz's notation.
- e. What are the units of f'(2000)?
- f. What is the real world meaning of f'(2000) = 150?

Analyze the graph of $y = -x^2$, using the first and second derivative graphs.

Graph of f(x)	Graph of f '(x)	The value of the slope of tangent line	Graph of f ''(x)	Observations
y = f(x) = -x ²	 for x < 0 f '(x) is positive. for x > 0 f '(x) is negative. f '(x) is always decreasing 	f'(-2) = 4 f'(-1) = 2 f'(0) = 0 f'(1) = -2 f'(2) = -4 f'(x) is always decreasing	y x f ''(x) < 0 for all x.	 On the same interval: f(x) is concave down f'(x) is decreasing f''(x) < 0

Observe the relationship between the graphs of f(x), f'(x) and f''(x).

Graph of f(x)	Graph of f'(x)	Graph of f''(x)	Observations	
y f(x) changes concavity	y f '(x) decreases then increases	<i>f</i> ''(x) is negative then positive	 Where f ''(x) changes from negative to positive, f(x) changes concavity. Where f ''(x) = 0, f(x) changes concavity. Where f '(x) changes from decreasing to increasing, f ''(x) = 0. 	
Conclusions:				
The First Derivative:				
• If $f'(x) > 0$ on an interval, then $f(x)$ is over that interval.				
• If $f'(x) < 0$ on an interval, then $f(x)$ is over that interval.				
• If $f'(x) = 0$ or	n an interval, then $f(.$	x) has a	at x which is	
either a	when ch		_ changes sign	
or a		when	does not change sign.	
The Second Derivativ	<u>e:</u>			
• If $f''(x) > 0$ of	on an interval, then f'	(<i>x</i>) is	and	
	f	(<i>x</i>) is	over that interval.	
• If $f''(x) < 0$ of	on an interval, then f'	(x) is	and	
	f	(<i>x</i>) is	over that interval.	
• If $f''(x) = 0$ of	on an interval, then f	(x) sometimes has a _	at	
		that value of x , but c	only if changes sign.	

Determine which of the functions graphed below is

- a) increasing at an increasing rate,
- b) increasing at a decreasing rate.
- c) decreasing at an increasing rate or
- d) decreasing at a decreasing rate.

Explain why you have chosen each.

