### 2.4 Interpretations of the Derivative-Student Notes <br> HH6ed

## An Alternative Notation for the Derivative and Interpreting its Meaning

Given that $y=f(x)$, the derivative can be written as $f^{\prime}(x)$ or $\frac{d y}{d x}$.
The second notation was introduced by Wilhelm Gottfried Leibniz, a German mathematician. The letter $d$ stands for "small difference in . . ." so literally the notation $\frac{d y}{d x}$ can be thought of as

Small difference in $y$-values
Small difference in $x$-values
We say "the derivative of $y$ with respect to $x$."
Example 1: Use the definition of derivative to find a formula for $\frac{d y}{d x}$ algebraically given $f(x)=x^{2}-x$.

If we want to indicate that you should find the derivative at $x=2$, you write $f^{\prime}(2)$ or $\left.\frac{d y}{d x}\right|_{x=2}$
Example 2: Suppose $s=f(t)$ gives the distance, in meters, of a body from a fixed point as a function of time $t$, in seconds.
a. Describe the following in real-world terms: $\left.\frac{d s}{d t}\right|_{t=2}$
b. What are the units associated with this quantity?
c. What is the common term for $\frac{d s}{d t}$ ?
d. What is the real-world meaning of $f^{\prime}(2)=10$ ? Use units in your answer.

Example 3: The cost, $C$, in dollars, of building a house $A \mathrm{ft}^{2}$ in area is given by the function $C=f(A)$.
a. What is the real world meaning of $f(2000)=195,000$ ? Use units in your answer.
b. What is in the independent variable? Dependent variable?
c. What is the sign of $f^{\prime}(A)$ ? Why?
d. Rewrite $f^{\prime}(A)$ in Leibniz's notation.
e. What are the units of $f^{\prime}(2000)$ ?
f. What is the real world meaning of $f^{\prime}(2000)=150$ ?

Analyze the graph of $y=-x^{2}$, using the first and second derivative graphs.

| Graph of $f(x)$ | Graph of $f^{\prime}(x)$ | The value of the slope of tangent line | Graph of ${ }^{\prime \prime}(x)$ | Observations |
| :---: | :---: | :---: | :---: | :---: |
| $y=f(x)=-x^{2}$  <br> - for $x<0 f$ is increasing <br> - for $x>0$ f is decreasing <br> - fis always concave down |  <br> - for $x<0 f^{\prime}(x)$ is positive. <br> - for $x>0 f^{\prime}(x)$ is negative. <br> - $\quad f^{\prime}(x)$ is always decreasing | $\begin{aligned} & \hline f^{\prime}(-2)=4 \\ & f^{\prime}(-1)=2 \\ & f^{\prime}(0)=0 \\ & f^{\prime}(l)=-2 \\ & f^{\prime}(2)=-4 \end{aligned}$ <br> $f^{\prime}(x)$ is always decreasing |  <br>  <br> $f^{\prime \prime}(x)<0$ for all $x$. | On the same interval: <br> - $f(x)$ is concave down <br> - $f^{\prime}(x)$ is decreasing <br> - $f^{\prime \prime}(x)<0$ |

Ubserve the relationship between the graphs of $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

| Graph of $f(x)$ | Graph of f' $(x)$ | Graph of $\mathrm{f}^{\prime}(x)$ | Observations |
| :---: | :---: | :---: | :---: |
|  <br> $f(x)$ changes concavity |  <br> $f^{\prime}(x)$ decreases then increases |  <br> $f^{\prime \prime}(x)$ is negative then positive | - Where $f^{\prime \prime}(x)$ changes from negative to positive, $f(x)$ changes concavity. <br> - Where $f^{\prime \prime}(x)=0, f(x)$ changes concavity. <br> - Where $f^{\prime}(x)$ changes from decreasing to increasing, $f^{\prime \prime}(x)=0$ |

## Conclusions:

## The First Derivative:

- If $f^{\prime}(x)>0$ on an interval, then $f(x)$ is $\qquad$ over that interval.
- If $f^{\prime}(x)<0$ on an interval, then $f(x)$ is $\qquad$ over that interval.
- If $f^{\prime}(x)=0$ on an interval, then $f(x)$ has a $\qquad$ at $x$ which is
either a $\qquad$ when $\qquad$ changes sign
or a $\qquad$ when $\qquad$ does not change sign.

The Second Derivative:

- If $f^{\prime \prime}(x)>0$ on an interval, then $f^{\prime}(x)$ is $\qquad$ and

$$
f(x) \text { is }
$$

$\qquad$ over that interval.

- If $f^{\prime \prime}(x)<0$ on an interval, then $f^{\prime}(x)$ is $\qquad$ and

$$
f(x) \text { is }
$$

$\qquad$ over that interval.

- If $f^{\prime \prime}(x)=0$ on an interval, then $f(x)$ sometimes has a $\qquad$ at
$\qquad$ changes sign.

Match the graph of each function below 1-6, with the graph of its second derivative A-F.


Graphs of the Second Derivative


Determine which of the functions graphed below is
a) increasing at an increasing rate.
b) increasing at a decreasing rate,
c) decreasing at an increasing rate or
d) decreasing at a decreasing rate.

Explain why you have chosen each.

## Graphs of Increasing and Decreasing functions

1.2 . 3.





