2.2 The Derivative at a Point--Student Notes

HH6ed

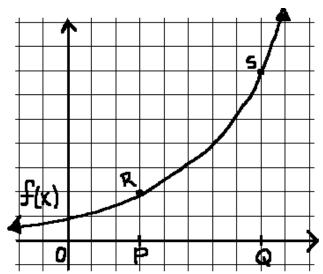
Refer to the graph at the right of some arbitrary function f.

1. Let *a* represent the distance from the origin *O* to the point *P*. Label it on the graph. Identify coordinate P

P(_____)

2. Let *h* represent the distance from point *P* to point *Q*. Label it on the graph. Outline it in blue Identify coordinate Q.

Q(_____)



3-4. Outline segments \overline{RP} and \overline{SQ} in green.

Write the algebraic expressions for the lengths of \overline{RP} and \overline{SQ} and identify coordinate R and S.

 $RP = _$ $SQ = _$ $R(_,_)$ $S(_,_)$

5. On the figure draw and label the segment whose length is f(a+h) - f(a) in blue.

6. Draw the secant line *RS* in blue. Write an algebraic expression for its slope. Simplify completely.

7. Suppose you were to take the limit of the slope expression you just wrote as *h* gets infinitely small. What would this limit represent geometrically?

8. Sketch the tangent line to the function f at the point R in red.

9. Write an algebraic expression for the slope of this line (Hint: Recall the relationship between average velocity and instantaneous velocity.)

10. What notation do we use for this quantity?

11. What special name do we reserve for this quantity?

Conclusion: The instantaneous rate of change or the derivative is $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Conclusion: The instantaneous rate of change or the derivative is $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

<u>Practice</u>: For each function, make a sketch of the curve and use your straight edge to draw the tangent line to the curve at the give point.

- a. Estimate the slope of the curve at the point using your tangent line (show work)
- b. Find the actual slope of the curve at the point using the definition of derivative

	Trite the equation of the tangent line to the curve point.	÷	+								
$f(x) = x^2$	+ 1 at x = 1	÷	+	+			- +		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
a.		+	+	+	+ +		- +	+	+	+	-
		├							+		\rightarrow
b.		÷	+	+	+ •		- +	+	+	+	-
		÷	+	+	+ •		- +				
		٢	+	+	+ •		+				
		÷	+	+	+ +	1	+	+	+	+	-

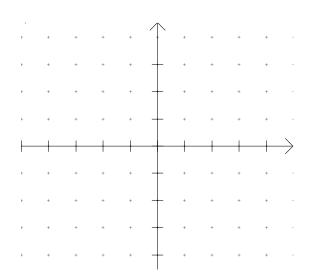
c.

12.

13.
$$f(x) = \frac{1}{x}$$
 at $x = 1$

a.

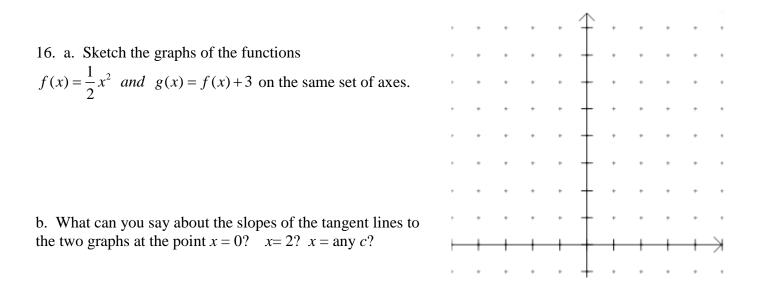
b.



c.

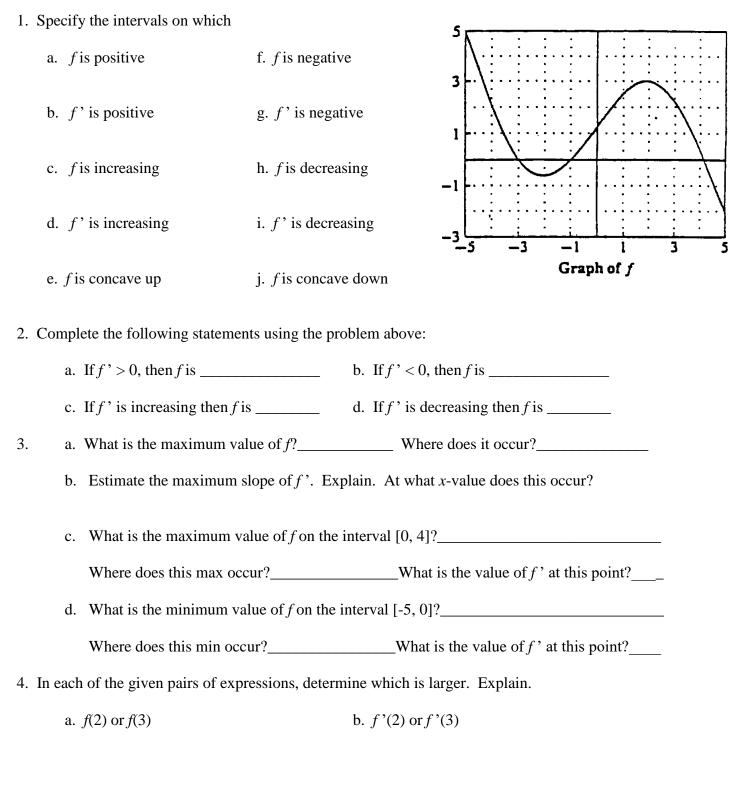
14. Find the derivative of $f(x) = 5x^2$ at x = 10 using the definition of derivative.

15. Find the equation of the line tangent to the function $f(x) = x^3$ at x = -2 using the definition of derivative.



c. Explain why adding a constant value, c, to any function does not change the value of the slope of its graph at any point.

<u>Review of Terminology</u>: Refer to f(x) with domain [-5,5] to answer the following questions.



c.
$$f(1) - f(0)$$
 or $f(2) - f(1)$
d. $\frac{f(1) - f(0)}{1 - 0}$ or $\frac{f(2) - f(0)}{2 - 0}$

4