1.8 Limits--Student Notes HH6ed

Part 1: Definition of Limits

The number *L* is the *limit of the function* f(x) as *x* approaches *c* if, as the values of *x* get arbitrarily close (but not equal) to *c*, the values of f(x) approach (or equal) *L*. We write $\lim f(x) = L$.

In order for $\lim_{x\to c} f(x)$ to exist, the values of f must tend to the same number L as x approaches c from either the left or the right. We write $\lim_{x\to c^-} f(x)$ for the *left-hand limit* of f at c (as x approaches c through values *less* than c), and $\lim_{x\to c^+} f(x)$ for the *right-hand limit* of f at c (as x approaches c through values *greater* than c),

5. $\lim_{x \to 2} x$ 10. $\lim_{x \to 0} f(x)$

Example 3: Given the graphs of each function, state whether or not $\lim_{x\to 3} f(x)$ exists and, if it does, give its value.

Use the graphs of f and g in the figure at the right to evaluate the limits, if they exist.

11.
$$\lim_{x \to -2} [f(x) + 5g(x)]$$
12.
$$\lim_{x \to 1} [f(x) \cdot g(x)]$$
13.
$$\lim_{x \to 2} \left[\frac{f(x)}{g(x)} \right]$$
14.
$$\lim_{x \to 3} [g^{2}(x)]$$

Part 2: FOUR Methods for Solving Limits Analytically

Direct Substitution

15.
$$\lim_{x \to 5} (x-7)$$
 16. $\lim_{x \to 5} (x^2 - 3x + 2)$ 17. $\lim_{x \to 5} (e^x + \pi x)$

Factoring and Cancellation

18.
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$
 19.
$$\lim_{x \to -2} \frac{x + 2}{x^2 - 4}$$
 20.
$$\lim_{x \to 3} \frac{1}{x - 3}$$

Multiply by the Conjugate

21.
$$\lim_{x \to 0} \frac{1 - \sqrt{1 + x}}{x}$$
 22.
$$\lim_{x \to 3} \frac{3 - x}{\sqrt{1 + x} - 2}$$

Simplify Complex Fractions (multiply by 1 as a fraction equal to LCD/LCD)

23.
$$\lim_{x \to 4} \frac{\left(\frac{1}{x} - \frac{1}{4}\right)}{(x - 4)}$$
 24.
$$\lim_{x \to 6} \frac{\left(\frac{1}{x - 5} - 1\right)}{(x - 6)}$$

*Mixed Practice

25.
$$\lim_{x \to 2} (5x^2 - 3x + 1)$$
 26. $\lim_{x \to 0} (x \cdot \cos(2x))$ 27. $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$

28.
$$\lim_{x \to 1} \frac{x^2 - 1}{1 - x^2}$$
 29.
$$\lim_{\Delta x \to 0} \frac{(3 + \Delta x)^2 - 3^2}{\Delta x}$$
 30.
$$\lim_{a \to 0} \frac{\left(\frac{a - x^2 - x}{x}\right)}{(a)}$$

 $\begin{pmatrix} 1 & 1 \end{pmatrix}$

To find $\lim_{x\to\infty} \frac{f(x)}{g(x)}$, where f(x) and g(x) are polynomials in *x*, we can divide both numerator and denominator by the highest power of *c* that occurs and use the fact that $\lim_{x\to\infty} \frac{1}{x} = 0$.

Examples:

31.
$$\lim_{x \to \infty} \frac{3-x}{4+x+x^2}$$
 32.
$$\lim_{x \to \infty} \frac{4x^4 + 5x + 1}{37x^3 - 9}$$
 33.
$$\lim_{x \to \infty} \frac{x^3 - 4x^2 + 7}{3 - 6x - 2x^3}$$

<u>Rational Function Theorem</u>: Given $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ (also applies when $x\to-\infty$)

- i. when the degree of f(x) < g(x)_____
- ii. when the degree of f(x) = g(x)_____
- iii. when the degree of f(x) > g(x)_____

*Practice:

34.
$$\lim_{x \to \infty} \frac{2x+1}{x-2}$$
 35. $\lim_{x \to -\infty} \frac{x^2+2x-3}{2x^3}$ 36. $\lim_{x \to -\infty} \frac{x}{x^2+3}$

37.
$$\lim_{x \to \infty} \frac{13 - 2x}{3x + 2}$$
 38.
$$\lim_{x \to \infty} \frac{x^3 - 5}{1 - x}$$
 39.
$$\lim_{x \to \infty} \frac{x^3 - 4x^4 + 12}{2x^4 - 1}$$

40. Complete the table

Function	Limit as $x \to 0$	Limit as $x \to +\infty$	Limit as $x \to -\infty$
1. $f(x) = x $			
$2. f(x) = \frac{ x }{x}$			
3. $f(x) = 6$			
$4. f(x) = \cos x$			
5. $f(x) = \frac{1}{x}$			
$f(x) = \frac{x+4}{x-2}$			
7. $f(x) = \frac{x-2}{x^2-4}$			
$8. f(x) = \frac{x^2 - 4}{x - 2}$			

Sketch the graph of a function f that satisfies all of the following conditions: 41.

a. Its domain is the interval [0, 4] b. f(0) = f(1) = f(2) = f(3) = f(4) = 1c. $\lim_{x \to 1} f(x) = 2$ d. $\lim_{x \to 2} f(x) = 1$ e. $\lim_{x \to 2} f(x) = 2$

e.
$$\lim_{x \to 3} f(x)$$

42. Let
$$f(x) = \frac{2x^2 + x + k}{x^2 - 2x - 3}$$
 and $g(x) = \frac{5x^2 + 12x + k}{x^2 - 2x - 3}$.

Find the number *k* so that each limit exists?

Evaluate each limit and justify your answer.

a. $\lim_{x \to 3} f(x)$ d. $\lim_{x\to 3} g(x)$ b. $\lim_{x \to -1} f(x)$ e. $\lim_{x \to -1} g(x)$ c. $\lim_{x\to\infty} f(x)$ f. $\lim_{x\to\infty} g(x)$

43. Sketch the graph of a function satisfying the following conditions.

Graph A

- 1) f(x) is an EVEN function (symmetry to the y-axis).
- 2) f(x) has a single root at x = 2, double root at x = 4.
- 3) f(1) = 6
- 4) $\lim_{x \to 1} f(x) = -3$
- 5) $\lim_{x \to 0} f(x) = -7$
- $6) \quad \lim_{x \to 6^-} f(x) = \infty$
- 7) $\lim_{x \to 6^+} f(x) = -\infty$
- $8) \quad \lim_{x \to \infty} f(x) = 0$

- 1) f(x) is an ODD function (symmetry to the origin).
- 2) f(x) has a single root at x = 0, triple root at x = 4.
- 3) f(2) = -3
- 4) $\lim_{x \to 2} f(x) = 4$
- $5) \quad \lim_{x \to 6} f(x) = -\infty$
- $6) \quad \lim_{x \to \infty} f(x) = \infty$
- 7) f(x) has an oblique

asymptote

