1.8 Limits--Student Notes HH6ed

Part 1: Definition of Limits

The number L is the limit of the function $f(x)$ as x approaches c if, as the values of x get arbitrarily close (but not equal) to c, the values of $f(x)$ approach (or equal) L. We write $\lim _{x \rightarrow c} f(x)=L$.

In order for $\lim _{x \rightarrow c} f(x)$ to exist, the values of f must tend to the same number L as x approaches c from either the left or the right. We write $\lim _{x \rightarrow c-} f(x)$ for the left-hand limit of f at c (as x approaches c through values less than c), and $\lim _{x \rightarrow c+} f(x)$ for the right-hand limit of f at c (as x approaches c through values greater than c),

Example 1:

Find the following for Example 1:

Example 2:

Find the following for Example 2:

1. $\lim _{x \rightarrow 0.6} x$
2. $\lim _{x \rightarrow-2.9} x$
3. $\lim _{x \rightarrow 2^{-}} x$
4. $\lim _{x \rightarrow 2^{+}} x$
5. $\lim _{x \rightarrow 2} x$

Example 3: Given the graphs of each function, state whether or not $\lim _{x \rightarrow 3} f(x)$ exists and, if it does, give its value.
a)

b)

c)

d)

Use the graphs of f and g in the figure at the right to evaluate the limits, if they exist.
11. $\lim _{x \rightarrow-2}[f(x)+5 g(x)]$
12. $\lim _{x \rightarrow 1}[f(x) \cdot g(x)]$
13. $\lim _{x \rightarrow 2}\left[\frac{f(x)}{g(x)}\right]$
14. $\lim _{x \rightarrow 3}\left[g^{2}(x)\right]$

Part 2: FOUR Methods for Solving Limits Analytically

Direct Substitution

15. $\lim _{x \rightarrow 5}(x-7)$
16. $\lim _{x \rightarrow 5}\left(x^{2}-3 x+2\right)$
17. $\lim _{x \rightarrow 5}\left(e^{x}+\pi x\right)$

Factoring and Cancellation
18. $\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}$
19. $\lim _{x \rightarrow-2} \frac{x+2}{x^{2}-4}$
20. $\lim _{x \rightarrow 3} \frac{1}{x-3}$

Multiply by the Conjugate
21. $\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x}}{x}$
22. $\lim _{x \rightarrow 3} \frac{3-x}{\sqrt{1+x}-2}$

Simplify Complex Fractions (multiply by 1 as a fraction equal to LCD/LCD)
23. $\lim _{x \rightarrow 4} \frac{\left(\frac{1}{x}-\frac{1}{4}\right)}{(x-4)}$
24. $\lim _{x \rightarrow 6} \frac{\left(\frac{1}{x-5}-1\right)}{(x-6)}$

*Mixed Practice

25. $\lim _{x \rightarrow 2}\left(5 x^{2}-3 x+1\right)$
26. $\lim _{x \rightarrow 0}(x \cdot \cos (2 x))$
27. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$
28. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{1-x^{2}}$
29. $\lim _{\Delta x \rightarrow 0} \frac{(3+\Delta x)^{2}-3^{2}}{\Delta x}$
30. $\lim _{a \rightarrow 0} \frac{\left(\frac{1}{a-x}-\frac{1}{x}\right)}{(a)}$

Part 3: Limits at Infinity

To find $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are polynomials in x, we can divide both numerator and denominator by the highest power of c that occurs and use the fact that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$.

Examples:
31. $\lim _{x \rightarrow \infty} \frac{3-x}{4+x+x^{2}}$
32. $\lim _{x \rightarrow \infty} \frac{4 x^{4}+5 x+1}{37 x^{3}-9}$
33. $\lim _{x \rightarrow \infty} \frac{x^{3}-4 x^{2}+7}{3-6 x-2 x^{3}}$

Rational Function Theorem: Given $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ (also applies when $x \rightarrow-\infty$)
i. when the degree of $f(x)<g(x)$ \qquad
ii. when the degree of $f(x)=g(x)$ \qquad
iii. when the degree of $f(x)>g(x)$

*Practice:

34. $\lim _{x \rightarrow \infty} \frac{2 x+1}{x-2}$
35. $\lim _{x \rightarrow-\infty} \frac{x^{2}+2 x-3}{2 x^{3}}$
36. $\lim _{x \rightarrow-\infty} \frac{x}{x^{2}+3}$
37. $\lim _{x \rightarrow \infty} \frac{13-2 x}{3 x+2}$
38. $\lim _{x \rightarrow-\infty} \frac{x^{3}-5}{1-x}$
39. $\lim _{x \rightarrow \infty} \frac{x^{3}-4 x^{4}+12}{2 x^{4}-1}$
40. Complete the table

Function	Limit as $x \rightarrow 0$	Limit as $x \rightarrow+\infty$	Limit as $x \rightarrow-\infty$
1. $f(x)=\|x\|$			
2. $f(x)=\frac{\|x\|}{x}$			
3. $f(x)=6$			
4. $f(x)=\cos x$			
5. $f(x)=\frac{1}{x}$			
6. $f(x)=\frac{x+4}{x-2}$			
7. $f(x)=\frac{x-2}{x^{2}-4}$			
8. $f(x)=\frac{x^{2}-4}{x-2}$			

41. Sketch the graph of a function f that satisfies all of the following conditions:
a. Its domain is the interval $[0,4]$
b. $f(0)=f(1)=f(2)=f(3)=f(4)=1$
c. $\lim _{x \rightarrow 1} f(x)=2$
d. $\lim _{x \rightarrow 2} f(x)=1$
e. $\lim _{x \rightarrow 3} f(x)=2$
42. Let $f(x)=\frac{2 x^{2}+x+k}{x^{2}-2 x-3} \quad$ and $\quad g(x)=\frac{5 x^{2}+12 x+k}{x^{2}-2 x-3}$.

Find the number k so that each limit exists?
Evaluate each limit and justify your answer.
a. $\lim _{x \rightarrow 3} f(x)$
b. $\lim _{x \rightarrow-1} f(x)$
c. $\lim _{x \rightarrow \infty} f(x)$
d. $\lim _{x \rightarrow 3} g(x)$
e. $\lim _{x \rightarrow-1} g(x)$
f. $\lim _{x \rightarrow \infty} g(x)$
43. Sketch the graph of a function satisfying the following conditions.

Graph A

1) $f(x)$ is an EVEN function
(symmetry to the y -axis).
2) $f(x)$ has a single root at $x=2$,
double root at $x=4$.
3) $f(1)=6$
4) $\lim _{x \rightarrow 1} f(x)=-3$
5) $\lim _{x \rightarrow 0} f(x)=-7$
6) $\lim _{x \rightarrow 6^{-}} f(x)=\infty$
7) $\lim _{x \rightarrow 6^{+}} f(x)=-\infty$
8) $\lim _{x \rightarrow \infty} f(x)=0$

Graph B

1) $f(x)$ is an ODD function (symmetry to the origin).
2) $f(x)$ has a single root at $x=0$, triple root at $x=4$.
3) $f(2)=-3$
4) $\lim _{x \rightarrow 2} f(x)=4$
5) $\lim _{x \rightarrow 6} f(x)=-\infty$
6) $\lim _{x \rightarrow \infty} f(x)=\infty$
7) $f(x)$ has an oblique
asymptote

