1.7 Continuous Functions – Student Notes

<u>Objective:</u> To understand a continuous function by investigating the relationship between an intuitive sense of continuity and its mathematical definition.

What is Continuity?

- 1. Which of the following situations could be classified as examples of continuous quantities?
 - Electricity used in a house during one month.
 - The amount of change in your pocket over one school day.
 - The height of the Ocean City tides over one year.
 - The temperature inside your oven during Thanksgiving Day.
- 2. Use **ZOOM 4: Decimal** window & the table on your calculator to investigate the different types of behaviors near and at x = 0. Consider the domain of the function as you investigate the behavior.

y = f(x)	Graph	Find $f(0)$.	Find $\lim_{x \to 0} f(x) =$	Is $f(x)$ continuous at $x = 0$?
f(x) = x		f(0) = 0	$\lim_{x\to 0} f(x) = 0$	f(x) is continous at $x = 0because f(x) has no holes,asymptotes, or jumps.$
$f(x) = \frac{x^2}{x}$				
$f(x) = \frac{1}{x}$				
$f(x) = \frac{ x }{x}$				
$f(x) = x^{\frac{2}{3}}$				
$f(x) = \frac{\sin(x)}{x}$				

3. Write a definition of continuity at a point x = c in terms of limits and the definition of the function at the point where x = c.

Mathematical Definition of CON	TINUITY	Describe 3 types of DISCONTINUITY?	
1		1	
2		2	
3		3	
4. Sketch the graph of $f(x) =$ Is $f(x)$ continuous at $x = -$	$\begin{cases} 2x+4, x \in (-\infty, -\infty, -\infty, -\infty, -\infty, -1] \\ x^2, x \in (-1, \infty, -1] \end{cases}$	$\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot &$	
5. Sketch the graph of $f(x) =$	$\begin{cases} -1, & x \in (-\infty, -2] \\ 2, & x \in (-2, 0) \\ x, & x \in [0, \infty) \end{cases}$		
Use the graph of $f(x)$ to define t	etermine continuity at:		
a) $x = -2$? Explain.	b) $x = 0$? Expla	ain. c) $x = 1$? Explain.	

6. Sketch the graph of a function f that satisfies all of the following conditions:

- The domain of f is $x \in [-3,3]$.
- f(-3) = f(-1) = f(1) = f(3) = 2
- It is discontinuous at -1 and 1.
- f is continuous on the open interval $x \in (-1,1)$.

7. Let
$$f(x) = \begin{cases} ax^2 + 2 & \text{if } x < -1 \\ x & \text{if } x \ge -1 \end{cases}$$
 What value of a makes f continuous at $x = -1$?

8. Suppose that the function f is continuous at and that f is defined by the rule

$$f(x) = \begin{cases} kx^2 + 2 & if \quad x < 5 \\ 4x + 7 & if \quad x \ge 5 \end{cases}$$

a. Find k. b. *Find $\lim_{x \to \infty} f(x)$.

*This means find the y-value that the function gets close to as x-value gets closer and closer to x = 5.

- 9. Given two functions f(x) and h(x) such that $f(x) = x^3 3x^2 4x + 12$ and $h(x) = \begin{cases} \frac{f(x)}{x-3} & \text{for } x \neq 3\\ p & \text{for } x = 3 \end{cases}$
 - a. Find all zeros of the function f.
 - b. Find the value of *p* so that the function *h* is continuous at x = 3. Justify your answer.
 - c. Using the value of p found in (b), determine whether h is an even function. Justify your answer.

(This problem is from the 1976 AP AB Calculus Exam)

$$f(x) = \frac{2x-2}{x^2+x-2}$$

- 10. Given the function f defined by
 - a. For what values of x is f(x) discontinuous?
 - b. At each point of discontinuity found in part (a), determine whether f(x) has a limit and, if so, give the value of the limit.
 - c. Write an equation for each vertical and horizontal asymptote. Justify your answer.
 - d. Draw a detailed and complete graph of f(x) using the information you found in parts a, b, & c.

(This problem is from the 1978 AP AB Calculus Exam)